| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0npr | GIF version | ||
| Description: The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.) |
| Ref | Expression |
|---|---|
| 0npr | ⊢ ¬ ∅ ∈ P |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3464 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1st0 6230 | . . . . . . 7 ⊢ (1st ‘∅) = ∅ | |
| 3 | 2 | eleq2i 2272 | . . . . . 6 ⊢ (𝑥 ∈ (1st ‘∅) ↔ 𝑥 ∈ ∅) |
| 4 | 1, 3 | mtbir 673 | . . . . 5 ⊢ ¬ 𝑥 ∈ (1st ‘∅) |
| 5 | 4 | nex 1523 | . . . 4 ⊢ ¬ ∃𝑥 𝑥 ∈ (1st ‘∅) |
| 6 | rexex 2552 | . . . 4 ⊢ (∃𝑥 ∈ Q 𝑥 ∈ (1st ‘∅) → ∃𝑥 𝑥 ∈ (1st ‘∅)) | |
| 7 | 5, 6 | mto 664 | . . 3 ⊢ ¬ ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘∅) |
| 8 | prml 7590 | . . 3 ⊢ (〈(1st ‘∅), (2nd ‘∅)〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘∅)) | |
| 9 | 7, 8 | mto 664 | . 2 ⊢ ¬ 〈(1st ‘∅), (2nd ‘∅)〉 ∈ P |
| 10 | prop 7588 | . 2 ⊢ (∅ ∈ P → 〈(1st ‘∅), (2nd ‘∅)〉 ∈ P) | |
| 11 | 9, 10 | mto 664 | 1 ⊢ ¬ ∅ ∈ P |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∃wex 1515 ∈ wcel 2176 ∃wrex 2485 ∅c0 3460 〈cop 3636 ‘cfv 5271 1st c1st 6224 2nd c2nd 6225 Qcnq 7393 Pcnp 7404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-1st 6226 df-2nd 6227 df-qs 6626 df-ni 7417 df-nqqs 7461 df-inp 7579 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |