| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0npr | GIF version | ||
| Description: The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.) |
| Ref | Expression |
|---|---|
| 0npr | ⊢ ¬ ∅ ∈ P |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3472 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1st0 6253 | . . . . . . 7 ⊢ (1st ‘∅) = ∅ | |
| 3 | 2 | eleq2i 2274 | . . . . . 6 ⊢ (𝑥 ∈ (1st ‘∅) ↔ 𝑥 ∈ ∅) |
| 4 | 1, 3 | mtbir 673 | . . . . 5 ⊢ ¬ 𝑥 ∈ (1st ‘∅) |
| 5 | 4 | nex 1524 | . . . 4 ⊢ ¬ ∃𝑥 𝑥 ∈ (1st ‘∅) |
| 6 | rexex 2554 | . . . 4 ⊢ (∃𝑥 ∈ Q 𝑥 ∈ (1st ‘∅) → ∃𝑥 𝑥 ∈ (1st ‘∅)) | |
| 7 | 5, 6 | mto 664 | . . 3 ⊢ ¬ ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘∅) |
| 8 | prml 7625 | . . 3 ⊢ (〈(1st ‘∅), (2nd ‘∅)〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘∅)) | |
| 9 | 7, 8 | mto 664 | . 2 ⊢ ¬ 〈(1st ‘∅), (2nd ‘∅)〉 ∈ P |
| 10 | prop 7623 | . 2 ⊢ (∅ ∈ P → 〈(1st ‘∅), (2nd ‘∅)〉 ∈ P) | |
| 11 | 9, 10 | mto 664 | 1 ⊢ ¬ ∅ ∈ P |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∃wex 1516 ∈ wcel 2178 ∃wrex 2487 ∅c0 3468 〈cop 3646 ‘cfv 5290 1st c1st 6247 2nd c2nd 6248 Qcnq 7428 Pcnp 7439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1st 6249 df-2nd 6250 df-qs 6649 df-ni 7452 df-nqqs 7496 df-inp 7614 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |