Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0npr | GIF version |
Description: The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.) |
Ref | Expression |
---|---|
0npr | ⊢ ¬ ∅ ∈ P |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3418 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1st0 6123 | . . . . . . 7 ⊢ (1st ‘∅) = ∅ | |
3 | 2 | eleq2i 2237 | . . . . . 6 ⊢ (𝑥 ∈ (1st ‘∅) ↔ 𝑥 ∈ ∅) |
4 | 1, 3 | mtbir 666 | . . . . 5 ⊢ ¬ 𝑥 ∈ (1st ‘∅) |
5 | 4 | nex 1493 | . . . 4 ⊢ ¬ ∃𝑥 𝑥 ∈ (1st ‘∅) |
6 | rexex 2516 | . . . 4 ⊢ (∃𝑥 ∈ Q 𝑥 ∈ (1st ‘∅) → ∃𝑥 𝑥 ∈ (1st ‘∅)) | |
7 | 5, 6 | mto 657 | . . 3 ⊢ ¬ ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘∅) |
8 | prml 7439 | . . 3 ⊢ (〈(1st ‘∅), (2nd ‘∅)〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘∅)) | |
9 | 7, 8 | mto 657 | . 2 ⊢ ¬ 〈(1st ‘∅), (2nd ‘∅)〉 ∈ P |
10 | prop 7437 | . 2 ⊢ (∅ ∈ P → 〈(1st ‘∅), (2nd ‘∅)〉 ∈ P) | |
11 | 9, 10 | mto 657 | 1 ⊢ ¬ ∅ ∈ P |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∃wex 1485 ∈ wcel 2141 ∃wrex 2449 ∅c0 3414 〈cop 3586 ‘cfv 5198 1st c1st 6117 2nd c2nd 6118 Qcnq 7242 Pcnp 7253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-qs 6519 df-ni 7266 df-nqqs 7310 df-inp 7428 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |