ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0npr GIF version

Theorem 0npr 7382
Description: The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.)
Assertion
Ref Expression
0npr ¬ ∅ ∈ P

Proof of Theorem 0npr
StepHypRef Expression
1 noel 3394 . . . . . 6 ¬ 𝑥 ∈ ∅
2 1st0 6082 . . . . . . 7 (1st ‘∅) = ∅
32eleq2i 2221 . . . . . 6 (𝑥 ∈ (1st ‘∅) ↔ 𝑥 ∈ ∅)
41, 3mtbir 661 . . . . 5 ¬ 𝑥 ∈ (1st ‘∅)
54nex 1477 . . . 4 ¬ ∃𝑥 𝑥 ∈ (1st ‘∅)
6 rexex 2500 . . . 4 (∃𝑥Q 𝑥 ∈ (1st ‘∅) → ∃𝑥 𝑥 ∈ (1st ‘∅))
75, 6mto 652 . . 3 ¬ ∃𝑥Q 𝑥 ∈ (1st ‘∅)
8 prml 7376 . . 3 (⟨(1st ‘∅), (2nd ‘∅)⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (1st ‘∅))
97, 8mto 652 . 2 ¬ ⟨(1st ‘∅), (2nd ‘∅)⟩ ∈ P
10 prop 7374 . 2 (∅ ∈ P → ⟨(1st ‘∅), (2nd ‘∅)⟩ ∈ P)
119, 10mto 652 1 ¬ ∅ ∈ P
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wex 1469  wcel 2125  wrex 2433  c0 3390  cop 3559  cfv 5163  1st c1st 6076  2nd c2nd 6077  Qcnq 7179  Pcnp 7190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-iinf 4541
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-1st 6078  df-2nd 6079  df-qs 6475  df-ni 7203  df-nqqs 7247  df-inp 7365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator