Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0npr | GIF version |
Description: The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.) |
Ref | Expression |
---|---|
0npr | ⊢ ¬ ∅ ∈ P |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3413 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1st0 6112 | . . . . . . 7 ⊢ (1st ‘∅) = ∅ | |
3 | 2 | eleq2i 2233 | . . . . . 6 ⊢ (𝑥 ∈ (1st ‘∅) ↔ 𝑥 ∈ ∅) |
4 | 1, 3 | mtbir 661 | . . . . 5 ⊢ ¬ 𝑥 ∈ (1st ‘∅) |
5 | 4 | nex 1488 | . . . 4 ⊢ ¬ ∃𝑥 𝑥 ∈ (1st ‘∅) |
6 | rexex 2512 | . . . 4 ⊢ (∃𝑥 ∈ Q 𝑥 ∈ (1st ‘∅) → ∃𝑥 𝑥 ∈ (1st ‘∅)) | |
7 | 5, 6 | mto 652 | . . 3 ⊢ ¬ ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘∅) |
8 | prml 7418 | . . 3 ⊢ (〈(1st ‘∅), (2nd ‘∅)〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘∅)) | |
9 | 7, 8 | mto 652 | . 2 ⊢ ¬ 〈(1st ‘∅), (2nd ‘∅)〉 ∈ P |
10 | prop 7416 | . 2 ⊢ (∅ ∈ P → 〈(1st ‘∅), (2nd ‘∅)〉 ∈ P) | |
11 | 9, 10 | mto 652 | 1 ⊢ ¬ ∅ ∈ P |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∃wex 1480 ∈ wcel 2136 ∃wrex 2445 ∅c0 3409 〈cop 3579 ‘cfv 5188 1st c1st 6106 2nd c2nd 6107 Qcnq 7221 Pcnp 7232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-qs 6507 df-ni 7245 df-nqqs 7289 df-inp 7407 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |