Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0npr | GIF version |
Description: The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.) |
Ref | Expression |
---|---|
0npr | ⊢ ¬ ∅ ∈ P |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3394 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1st0 6082 | . . . . . . 7 ⊢ (1st ‘∅) = ∅ | |
3 | 2 | eleq2i 2221 | . . . . . 6 ⊢ (𝑥 ∈ (1st ‘∅) ↔ 𝑥 ∈ ∅) |
4 | 1, 3 | mtbir 661 | . . . . 5 ⊢ ¬ 𝑥 ∈ (1st ‘∅) |
5 | 4 | nex 1477 | . . . 4 ⊢ ¬ ∃𝑥 𝑥 ∈ (1st ‘∅) |
6 | rexex 2500 | . . . 4 ⊢ (∃𝑥 ∈ Q 𝑥 ∈ (1st ‘∅) → ∃𝑥 𝑥 ∈ (1st ‘∅)) | |
7 | 5, 6 | mto 652 | . . 3 ⊢ ¬ ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘∅) |
8 | prml 7376 | . . 3 ⊢ (〈(1st ‘∅), (2nd ‘∅)〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘∅)) | |
9 | 7, 8 | mto 652 | . 2 ⊢ ¬ 〈(1st ‘∅), (2nd ‘∅)〉 ∈ P |
10 | prop 7374 | . 2 ⊢ (∅ ∈ P → 〈(1st ‘∅), (2nd ‘∅)〉 ∈ P) | |
11 | 9, 10 | mto 652 | 1 ⊢ ¬ ∅ ∈ P |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∃wex 1469 ∈ wcel 2125 ∃wrex 2433 ∅c0 3390 〈cop 3559 ‘cfv 5163 1st c1st 6076 2nd c2nd 6077 Qcnq 7179 Pcnp 7190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-iinf 4541 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-1st 6078 df-2nd 6079 df-qs 6475 df-ni 7203 df-nqqs 7247 df-inp 7365 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |