Proof of Theorem dfnfc2
| Step | Hyp | Ref
| Expression |
| 1 | | nfcvd 2340 |
. . . 4
⊢
(Ⅎ𝑥𝐴 → Ⅎ𝑥𝑦) |
| 2 | | id 19 |
. . . 4
⊢
(Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) |
| 3 | 1, 2 | nfeqd 2354 |
. . 3
⊢
(Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 = 𝐴) |
| 4 | 3 | alrimiv 1888 |
. 2
⊢
(Ⅎ𝑥𝐴 → ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) |
| 5 | | simpr 110 |
. . . . . 6
⊢
((∀𝑥 𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) → ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) |
| 6 | | df-nfc 2328 |
. . . . . . 7
⊢
(Ⅎ𝑥{𝐴} ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ {𝐴}) |
| 7 | | velsn 3639 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴) |
| 8 | 7 | nfbii 1487 |
. . . . . . . 8
⊢
(Ⅎ𝑥 𝑦 ∈ {𝐴} ↔ Ⅎ𝑥 𝑦 = 𝐴) |
| 9 | 8 | albii 1484 |
. . . . . . 7
⊢
(∀𝑦Ⅎ𝑥 𝑦 ∈ {𝐴} ↔ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) |
| 10 | 6, 9 | bitri 184 |
. . . . . 6
⊢
(Ⅎ𝑥{𝐴} ↔ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) |
| 11 | 5, 10 | sylibr 134 |
. . . . 5
⊢
((∀𝑥 𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) → Ⅎ𝑥{𝐴}) |
| 12 | 11 | nfunid 3846 |
. . . 4
⊢
((∀𝑥 𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) → Ⅎ𝑥∪ {𝐴}) |
| 13 | | nfa1 1555 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑥 𝐴 ∈ 𝑉 |
| 14 | | nfnf1 1558 |
. . . . . . 7
⊢
Ⅎ𝑥Ⅎ𝑥 𝑦 = 𝐴 |
| 15 | 14 | nfal 1590 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑦Ⅎ𝑥 𝑦 = 𝐴 |
| 16 | 13, 15 | nfan 1579 |
. . . . 5
⊢
Ⅎ𝑥(∀𝑥 𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) |
| 17 | | unisng 3856 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
| 18 | 17 | sps 1551 |
. . . . . 6
⊢
(∀𝑥 𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
| 19 | 18 | adantr 276 |
. . . . 5
⊢
((∀𝑥 𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) → ∪ {𝐴} = 𝐴) |
| 20 | 16, 19 | nfceqdf 2338 |
. . . 4
⊢
((∀𝑥 𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) → (Ⅎ𝑥∪ {𝐴} ↔ Ⅎ𝑥𝐴)) |
| 21 | 12, 20 | mpbid 147 |
. . 3
⊢
((∀𝑥 𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) → Ⅎ𝑥𝐴) |
| 22 | 21 | ex 115 |
. 2
⊢
(∀𝑥 𝐴 ∈ 𝑉 → (∀𝑦Ⅎ𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴)) |
| 23 | 4, 22 | impbid2 143 |
1
⊢
(∀𝑥 𝐴 ∈ 𝑉 → (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴)) |