| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfimad | GIF version | ||
| Description: Deduction version of bound-variable hypothesis builder nfima 5044. (Contributed by FL, 15-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfimad.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfimad.3 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfimad | ⊢ (𝜑 → Ⅎ𝑥(𝐴 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfaba1 2355 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} | |
| 2 | nfaba1 2355 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵} | |
| 3 | 1, 2 | nfima 5044 | . 2 ⊢ Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) |
| 4 | nfimad.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | nfimad.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 6 | nfnfc1 2352 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 | |
| 7 | nfnfc1 2352 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐵 | |
| 8 | 6, 7 | nfan 1589 | . . . 4 ⊢ Ⅎ𝑥(Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) |
| 9 | abidnf 2945 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) | |
| 10 | 9 | imaeq1d 5035 | . . . . 5 ⊢ (Ⅎ𝑥𝐴 → ({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) = (𝐴 “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵})) |
| 11 | abidnf 2945 | . . . . . 6 ⊢ (Ⅎ𝑥𝐵 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵} = 𝐵) | |
| 12 | 11 | imaeq2d 5036 | . . . . 5 ⊢ (Ⅎ𝑥𝐵 → (𝐴 “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) = (𝐴 “ 𝐵)) |
| 13 | 10, 12 | sylan9eq 2259 | . . . 4 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → ({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) = (𝐴 “ 𝐵)) |
| 14 | 8, 13 | nfceqdf 2348 | . . 3 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → (Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) ↔ Ⅎ𝑥(𝐴 “ 𝐵))) |
| 15 | 4, 5, 14 | syl2anc 411 | . 2 ⊢ (𝜑 → (Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) ↔ Ⅎ𝑥(𝐴 “ 𝐵))) |
| 16 | 3, 15 | mpbii 148 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝐴 “ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 ∈ wcel 2177 {cab 2192 Ⅎwnfc 2336 “ cima 4691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-br 4055 df-opab 4117 df-xp 4694 df-cnv 4696 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |