ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfimad GIF version

Theorem nfimad 4962
Description: Deduction version of bound-variable hypothesis builder nfima 4961. (Contributed by FL, 15-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfimad.2 (𝜑𝑥𝐴)
nfimad.3 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfimad (𝜑𝑥(𝐴𝐵))

Proof of Theorem nfimad
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2318 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐴}
2 nfaba1 2318 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐵}
31, 2nfima 4961 . 2 𝑥({𝑧 ∣ ∀𝑥 𝑧𝐴} “ {𝑧 ∣ ∀𝑥 𝑧𝐵})
4 nfimad.2 . . 3 (𝜑𝑥𝐴)
5 nfimad.3 . . 3 (𝜑𝑥𝐵)
6 nfnfc1 2315 . . . . 5 𝑥𝑥𝐴
7 nfnfc1 2315 . . . . 5 𝑥𝑥𝐵
86, 7nfan 1558 . . . 4 𝑥(𝑥𝐴𝑥𝐵)
9 abidnf 2898 . . . . . 6 (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
109imaeq1d 4952 . . . . 5 (𝑥𝐴 → ({𝑧 ∣ ∀𝑥 𝑧𝐴} “ {𝑧 ∣ ∀𝑥 𝑧𝐵}) = (𝐴 “ {𝑧 ∣ ∀𝑥 𝑧𝐵}))
11 abidnf 2898 . . . . . 6 (𝑥𝐵 → {𝑧 ∣ ∀𝑥 𝑧𝐵} = 𝐵)
1211imaeq2d 4953 . . . . 5 (𝑥𝐵 → (𝐴 “ {𝑧 ∣ ∀𝑥 𝑧𝐵}) = (𝐴𝐵))
1310, 12sylan9eq 2223 . . . 4 ((𝑥𝐴𝑥𝐵) → ({𝑧 ∣ ∀𝑥 𝑧𝐴} “ {𝑧 ∣ ∀𝑥 𝑧𝐵}) = (𝐴𝐵))
148, 13nfceqdf 2311 . . 3 ((𝑥𝐴𝑥𝐵) → (𝑥({𝑧 ∣ ∀𝑥 𝑧𝐴} “ {𝑧 ∣ ∀𝑥 𝑧𝐵}) ↔ 𝑥(𝐴𝐵)))
154, 5, 14syl2anc 409 . 2 (𝜑 → (𝑥({𝑧 ∣ ∀𝑥 𝑧𝐴} “ {𝑧 ∣ ∀𝑥 𝑧𝐵}) ↔ 𝑥(𝐴𝐵)))
163, 15mpbii 147 1 (𝜑𝑥(𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1346  wcel 2141  {cab 2156  wnfc 2299  cima 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator