| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfimad | GIF version | ||
| Description: Deduction version of bound-variable hypothesis builder nfima 5075. (Contributed by FL, 15-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfimad.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfimad.3 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfimad | ⊢ (𝜑 → Ⅎ𝑥(𝐴 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfaba1 2378 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} | |
| 2 | nfaba1 2378 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵} | |
| 3 | 1, 2 | nfima 5075 | . 2 ⊢ Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) |
| 4 | nfimad.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | nfimad.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 6 | nfnfc1 2375 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 | |
| 7 | nfnfc1 2375 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐵 | |
| 8 | 6, 7 | nfan 1611 | . . . 4 ⊢ Ⅎ𝑥(Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) |
| 9 | abidnf 2971 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) | |
| 10 | 9 | imaeq1d 5066 | . . . . 5 ⊢ (Ⅎ𝑥𝐴 → ({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) = (𝐴 “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵})) |
| 11 | abidnf 2971 | . . . . . 6 ⊢ (Ⅎ𝑥𝐵 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵} = 𝐵) | |
| 12 | 11 | imaeq2d 5067 | . . . . 5 ⊢ (Ⅎ𝑥𝐵 → (𝐴 “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) = (𝐴 “ 𝐵)) |
| 13 | 10, 12 | sylan9eq 2282 | . . . 4 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → ({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) = (𝐴 “ 𝐵)) |
| 14 | 8, 13 | nfceqdf 2371 | . . 3 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → (Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) ↔ Ⅎ𝑥(𝐴 “ 𝐵))) |
| 15 | 4, 5, 14 | syl2anc 411 | . 2 ⊢ (𝜑 → (Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) ↔ Ⅎ𝑥(𝐴 “ 𝐵))) |
| 16 | 3, 15 | mpbii 148 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝐴 “ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1393 ∈ wcel 2200 {cab 2215 Ⅎwnfc 2359 “ cima 4721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |