Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfimad | GIF version |
Description: Deduction version of bound-variable hypothesis builder nfima 4961. (Contributed by FL, 15-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfimad.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfimad.3 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfimad | ⊢ (𝜑 → Ⅎ𝑥(𝐴 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfaba1 2318 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} | |
2 | nfaba1 2318 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵} | |
3 | 1, 2 | nfima 4961 | . 2 ⊢ Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) |
4 | nfimad.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
5 | nfimad.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
6 | nfnfc1 2315 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 | |
7 | nfnfc1 2315 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐵 | |
8 | 6, 7 | nfan 1558 | . . . 4 ⊢ Ⅎ𝑥(Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) |
9 | abidnf 2898 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) | |
10 | 9 | imaeq1d 4952 | . . . . 5 ⊢ (Ⅎ𝑥𝐴 → ({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) = (𝐴 “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵})) |
11 | abidnf 2898 | . . . . . 6 ⊢ (Ⅎ𝑥𝐵 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵} = 𝐵) | |
12 | 11 | imaeq2d 4953 | . . . . 5 ⊢ (Ⅎ𝑥𝐵 → (𝐴 “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) = (𝐴 “ 𝐵)) |
13 | 10, 12 | sylan9eq 2223 | . . . 4 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → ({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) = (𝐴 “ 𝐵)) |
14 | 8, 13 | nfceqdf 2311 | . . 3 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → (Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) ↔ Ⅎ𝑥(𝐴 “ 𝐵))) |
15 | 4, 5, 14 | syl2anc 409 | . 2 ⊢ (𝜑 → (Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) ↔ Ⅎ𝑥(𝐴 “ 𝐵))) |
16 | 3, 15 | mpbii 147 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝐴 “ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1346 ∈ wcel 2141 {cab 2156 Ⅎwnfc 2299 “ cima 4614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |