ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfopd GIF version

Theorem nfopd 3825
Description: Deduction version of bound-variable hypothesis builder nfop 3824. This shows how the deduction version of a not-free theorem such as nfop 3824 can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008.)
Hypotheses
Ref Expression
nfopd.2 (𝜑𝑥𝐴)
nfopd.3 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfopd (𝜑𝑥𝐴, 𝐵⟩)

Proof of Theorem nfopd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2345 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐴}
2 nfaba1 2345 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐵}
31, 2nfop 3824 . 2 𝑥⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩
4 nfopd.2 . . 3 (𝜑𝑥𝐴)
5 nfopd.3 . . 3 (𝜑𝑥𝐵)
6 nfnfc1 2342 . . . . 5 𝑥𝑥𝐴
7 nfnfc1 2342 . . . . 5 𝑥𝑥𝐵
86, 7nfan 1579 . . . 4 𝑥(𝑥𝐴𝑥𝐵)
9 abidnf 2932 . . . . . 6 (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
109adantr 276 . . . . 5 ((𝑥𝐴𝑥𝐵) → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
11 abidnf 2932 . . . . . 6 (𝑥𝐵 → {𝑧 ∣ ∀𝑥 𝑧𝐵} = 𝐵)
1211adantl 277 . . . . 5 ((𝑥𝐴𝑥𝐵) → {𝑧 ∣ ∀𝑥 𝑧𝐵} = 𝐵)
1310, 12opeq12d 3816 . . . 4 ((𝑥𝐴𝑥𝐵) → ⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩ = ⟨𝐴, 𝐵⟩)
148, 13nfceqdf 2338 . . 3 ((𝑥𝐴𝑥𝐵) → (𝑥⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩ ↔ 𝑥𝐴, 𝐵⟩))
154, 5, 14syl2anc 411 . 2 (𝜑 → (𝑥⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩ ↔ 𝑥𝐴, 𝐵⟩))
163, 15mpbii 148 1 (𝜑𝑥𝐴, 𝐵⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wcel 2167  {cab 2182  wnfc 2326  cop 3625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631
This theorem is referenced by:  nfbrd  4078  nfovd  5951
  Copyright terms: Public domain W3C validator