![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfopd | GIF version |
Description: Deduction version of bound-variable hypothesis builder nfop 3796. This shows how the deduction version of a not-free theorem such as nfop 3796 can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008.) |
Ref | Expression |
---|---|
nfopd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfopd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfopd | ⊢ (𝜑 → Ⅎ𝑥⟨𝐴, 𝐵⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfaba1 2325 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} | |
2 | nfaba1 2325 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵} | |
3 | 1, 2 | nfop 3796 | . 2 ⊢ Ⅎ𝑥⟨{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}, {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}⟩ |
4 | nfopd.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
5 | nfopd.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
6 | nfnfc1 2322 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 | |
7 | nfnfc1 2322 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐵 | |
8 | 6, 7 | nfan 1565 | . . . 4 ⊢ Ⅎ𝑥(Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) |
9 | abidnf 2907 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) | |
10 | 9 | adantr 276 | . . . . 5 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) |
11 | abidnf 2907 | . . . . . 6 ⊢ (Ⅎ𝑥𝐵 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵} = 𝐵) | |
12 | 11 | adantl 277 | . . . . 5 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵} = 𝐵) |
13 | 10, 12 | opeq12d 3788 | . . . 4 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → ⟨{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}, {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}⟩ = ⟨𝐴, 𝐵⟩) |
14 | 8, 13 | nfceqdf 2318 | . . 3 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → (Ⅎ𝑥⟨{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}, {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}⟩ ↔ Ⅎ𝑥⟨𝐴, 𝐵⟩)) |
15 | 4, 5, 14 | syl2anc 411 | . 2 ⊢ (𝜑 → (Ⅎ𝑥⟨{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}, {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}⟩ ↔ Ⅎ𝑥⟨𝐴, 𝐵⟩)) |
16 | 3, 15 | mpbii 148 | 1 ⊢ (𝜑 → Ⅎ𝑥⟨𝐴, 𝐵⟩) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 = wceq 1353 ∈ wcel 2148 {cab 2163 Ⅎwnfc 2306 ⟨cop 3597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 |
This theorem is referenced by: nfbrd 4050 nfovd 5906 |
Copyright terms: Public domain | W3C validator |