ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfopd GIF version

Theorem nfopd 3624
Description: Deduction version of bound-variable hypothesis builder nfop 3623. This shows how the deduction version of a not-free theorem such as nfop 3623 can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008.)
Hypotheses
Ref Expression
nfopd.2 (𝜑𝑥𝐴)
nfopd.3 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfopd (𝜑𝑥𝐴, 𝐵⟩)

Proof of Theorem nfopd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2230 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐴}
2 nfaba1 2230 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐵}
31, 2nfop 3623 . 2 𝑥⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩
4 nfopd.2 . . 3 (𝜑𝑥𝐴)
5 nfopd.3 . . 3 (𝜑𝑥𝐵)
6 nfnfc1 2228 . . . . 5 𝑥𝑥𝐴
7 nfnfc1 2228 . . . . 5 𝑥𝑥𝐵
86, 7nfan 1500 . . . 4 𝑥(𝑥𝐴𝑥𝐵)
9 abidnf 2774 . . . . . 6 (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
109adantr 270 . . . . 5 ((𝑥𝐴𝑥𝐵) → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
11 abidnf 2774 . . . . . 6 (𝑥𝐵 → {𝑧 ∣ ∀𝑥 𝑧𝐵} = 𝐵)
1211adantl 271 . . . . 5 ((𝑥𝐴𝑥𝐵) → {𝑧 ∣ ∀𝑥 𝑧𝐵} = 𝐵)
1310, 12opeq12d 3615 . . . 4 ((𝑥𝐴𝑥𝐵) → ⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩ = ⟨𝐴, 𝐵⟩)
148, 13nfceqdf 2224 . . 3 ((𝑥𝐴𝑥𝐵) → (𝑥⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩ ↔ 𝑥𝐴, 𝐵⟩))
154, 5, 14syl2anc 403 . 2 (𝜑 → (𝑥⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩ ↔ 𝑥𝐴, 𝐵⟩))
163, 15mpbii 146 1 (𝜑𝑥𝐴, 𝐵⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1285   = wceq 1287  wcel 1436  {cab 2071  wnfc 2212  cop 3434
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-v 2617  df-un 2992  df-sn 3437  df-pr 3438  df-op 3440
This theorem is referenced by:  nfbrd  3865  nfovd  5637
  Copyright terms: Public domain W3C validator