ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfopd GIF version

Theorem nfopd 3760
Description: Deduction version of bound-variable hypothesis builder nfop 3759. This shows how the deduction version of a not-free theorem such as nfop 3759 can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008.)
Hypotheses
Ref Expression
nfopd.2 (𝜑𝑥𝐴)
nfopd.3 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfopd (𝜑𝑥𝐴, 𝐵⟩)

Proof of Theorem nfopd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2305 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐴}
2 nfaba1 2305 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐵}
31, 2nfop 3759 . 2 𝑥⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩
4 nfopd.2 . . 3 (𝜑𝑥𝐴)
5 nfopd.3 . . 3 (𝜑𝑥𝐵)
6 nfnfc1 2302 . . . . 5 𝑥𝑥𝐴
7 nfnfc1 2302 . . . . 5 𝑥𝑥𝐵
86, 7nfan 1545 . . . 4 𝑥(𝑥𝐴𝑥𝐵)
9 abidnf 2880 . . . . . 6 (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
109adantr 274 . . . . 5 ((𝑥𝐴𝑥𝐵) → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
11 abidnf 2880 . . . . . 6 (𝑥𝐵 → {𝑧 ∣ ∀𝑥 𝑧𝐵} = 𝐵)
1211adantl 275 . . . . 5 ((𝑥𝐴𝑥𝐵) → {𝑧 ∣ ∀𝑥 𝑧𝐵} = 𝐵)
1310, 12opeq12d 3751 . . . 4 ((𝑥𝐴𝑥𝐵) → ⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩ = ⟨𝐴, 𝐵⟩)
148, 13nfceqdf 2298 . . 3 ((𝑥𝐴𝑥𝐵) → (𝑥⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩ ↔ 𝑥𝐴, 𝐵⟩))
154, 5, 14syl2anc 409 . 2 (𝜑 → (𝑥⟨{𝑧 ∣ ∀𝑥 𝑧𝐴}, {𝑧 ∣ ∀𝑥 𝑧𝐵}⟩ ↔ 𝑥𝐴, 𝐵⟩))
163, 15mpbii 147 1 (𝜑𝑥𝐴, 𝐵⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1333   = wceq 1335  wcel 2128  {cab 2143  wnfc 2286  cop 3564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-sn 3567  df-pr 3568  df-op 3570
This theorem is referenced by:  nfbrd  4011  nfovd  5852
  Copyright terms: Public domain W3C validator