| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nffvd | GIF version | ||
| Description: Deduction version of bound-variable hypothesis builder nffv 5633. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nffvd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐹) |
| nffvd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nffvd | ⊢ (𝜑 → Ⅎ𝑥(𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfaba1 2378 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹} | |
| 2 | nfaba1 2378 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} | |
| 3 | 1, 2 | nffv 5633 | . 2 ⊢ Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹}‘{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}) |
| 4 | nffvd.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐹) | |
| 5 | nffvd.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 6 | nfnfc1 2375 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐹 | |
| 7 | nfnfc1 2375 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 | |
| 8 | 6, 7 | nfan 1611 | . . . 4 ⊢ Ⅎ𝑥(Ⅎ𝑥𝐹 ∧ Ⅎ𝑥𝐴) |
| 9 | abidnf 2971 | . . . . . 6 ⊢ (Ⅎ𝑥𝐹 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹} = 𝐹) | |
| 10 | 9 | adantr 276 | . . . . 5 ⊢ ((Ⅎ𝑥𝐹 ∧ Ⅎ𝑥𝐴) → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹} = 𝐹) |
| 11 | abidnf 2971 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) | |
| 12 | 11 | adantl 277 | . . . . 5 ⊢ ((Ⅎ𝑥𝐹 ∧ Ⅎ𝑥𝐴) → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) |
| 13 | 10, 12 | fveq12d 5630 | . . . 4 ⊢ ((Ⅎ𝑥𝐹 ∧ Ⅎ𝑥𝐴) → ({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹}‘{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}) = (𝐹‘𝐴)) |
| 14 | 8, 13 | nfceqdf 2371 | . . 3 ⊢ ((Ⅎ𝑥𝐹 ∧ Ⅎ𝑥𝐴) → (Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹}‘{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}) ↔ Ⅎ𝑥(𝐹‘𝐴))) |
| 15 | 4, 5, 14 | syl2anc 411 | . 2 ⊢ (𝜑 → (Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹}‘{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}) ↔ Ⅎ𝑥(𝐹‘𝐴))) |
| 16 | 3, 15 | mpbii 148 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝐹‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1393 = wceq 1395 ∈ wcel 2200 {cab 2215 Ⅎwnfc 2359 ‘cfv 5314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5274 df-fv 5322 |
| This theorem is referenced by: nfovd 6023 nfixpxy 6854 |
| Copyright terms: Public domain | W3C validator |