| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nffvd | GIF version | ||
| Description: Deduction version of bound-variable hypothesis builder nffv 5568. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nffvd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐹) |
| nffvd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nffvd | ⊢ (𝜑 → Ⅎ𝑥(𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfaba1 2345 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹} | |
| 2 | nfaba1 2345 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} | |
| 3 | 1, 2 | nffv 5568 | . 2 ⊢ Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹}‘{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}) |
| 4 | nffvd.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐹) | |
| 5 | nffvd.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 6 | nfnfc1 2342 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐹 | |
| 7 | nfnfc1 2342 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 | |
| 8 | 6, 7 | nfan 1579 | . . . 4 ⊢ Ⅎ𝑥(Ⅎ𝑥𝐹 ∧ Ⅎ𝑥𝐴) |
| 9 | abidnf 2932 | . . . . . 6 ⊢ (Ⅎ𝑥𝐹 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹} = 𝐹) | |
| 10 | 9 | adantr 276 | . . . . 5 ⊢ ((Ⅎ𝑥𝐹 ∧ Ⅎ𝑥𝐴) → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹} = 𝐹) |
| 11 | abidnf 2932 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) | |
| 12 | 11 | adantl 277 | . . . . 5 ⊢ ((Ⅎ𝑥𝐹 ∧ Ⅎ𝑥𝐴) → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) |
| 13 | 10, 12 | fveq12d 5565 | . . . 4 ⊢ ((Ⅎ𝑥𝐹 ∧ Ⅎ𝑥𝐴) → ({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹}‘{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}) = (𝐹‘𝐴)) |
| 14 | 8, 13 | nfceqdf 2338 | . . 3 ⊢ ((Ⅎ𝑥𝐹 ∧ Ⅎ𝑥𝐴) → (Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹}‘{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}) ↔ Ⅎ𝑥(𝐹‘𝐴))) |
| 15 | 4, 5, 14 | syl2anc 411 | . 2 ⊢ (𝜑 → (Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹}‘{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}) ↔ Ⅎ𝑥(𝐹‘𝐴))) |
| 16 | 3, 15 | mpbii 148 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝐹‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2167 {cab 2182 Ⅎwnfc 2326 ‘cfv 5258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 |
| This theorem is referenced by: nfovd 5951 nfixpxy 6776 |
| Copyright terms: Public domain | W3C validator |