ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeu GIF version

Theorem nfeu 2045
Description: Bound-variable hypothesis builder for existential uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 23-May-2018.)
Hypothesis
Ref Expression
nfeu.1 𝑥𝜑
Assertion
Ref Expression
nfeu 𝑥∃!𝑦𝜑

Proof of Theorem nfeu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1528 . . 3 𝑧𝜑
21sb8eu 2039 . 2 (∃!𝑦𝜑 ↔ ∃!𝑧[𝑧 / 𝑦]𝜑)
3 nfeu.1 . . . 4 𝑥𝜑
43nfsb 1946 . . 3 𝑥[𝑧 / 𝑦]𝜑
54nfeuv 2044 . 2 𝑥∃!𝑧[𝑧 / 𝑦]𝜑
62, 5nfxfr 1474 1 𝑥∃!𝑦𝜑
Colors of variables: wff set class
Syntax hints:  wnf 1460  [wsb 1762  ∃!weu 2026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029
This theorem is referenced by:  hbeu  2047  eusv2nf  4457
  Copyright terms: Public domain W3C validator