ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeu GIF version

Theorem nfeu 2074
Description: Bound-variable hypothesis builder for existential uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 23-May-2018.)
Hypothesis
Ref Expression
nfeu.1 𝑥𝜑
Assertion
Ref Expression
nfeu 𝑥∃!𝑦𝜑

Proof of Theorem nfeu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1552 . . 3 𝑧𝜑
21sb8eu 2068 . 2 (∃!𝑦𝜑 ↔ ∃!𝑧[𝑧 / 𝑦]𝜑)
3 nfeu.1 . . . 4 𝑥𝜑
43nfsb 1975 . . 3 𝑥[𝑧 / 𝑦]𝜑
54nfeuv 2073 . 2 𝑥∃!𝑧[𝑧 / 𝑦]𝜑
62, 5nfxfr 1498 1 𝑥∃!𝑦𝜑
Colors of variables: wff set class
Syntax hints:  wnf 1484  [wsb 1786  ∃!weu 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058
This theorem is referenced by:  hbeu  2076  eusv2nf  4511
  Copyright terms: Public domain W3C validator