| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfeu | GIF version | ||
| Description: Bound-variable hypothesis builder for existential uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 23-May-2018.) | 
| Ref | Expression | 
|---|---|
| nfeu.1 | ⊢ Ⅎ𝑥𝜑 | 
| Ref | Expression | 
|---|---|
| nfeu | ⊢ Ⅎ𝑥∃!𝑦𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 2 | 1 | sb8eu 2058 | . 2 ⊢ (∃!𝑦𝜑 ↔ ∃!𝑧[𝑧 / 𝑦]𝜑) | 
| 3 | nfeu.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 4 | 3 | nfsb 1965 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑦]𝜑 | 
| 5 | 4 | nfeuv 2063 | . 2 ⊢ Ⅎ𝑥∃!𝑧[𝑧 / 𝑦]𝜑 | 
| 6 | 2, 5 | nfxfr 1488 | 1 ⊢ Ⅎ𝑥∃!𝑦𝜑 | 
| Colors of variables: wff set class | 
| Syntax hints: Ⅎwnf 1474 [wsb 1776 ∃!weu 2045 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 | 
| This theorem is referenced by: hbeu 2066 eusv2nf 4491 | 
| Copyright terms: Public domain | W3C validator |