ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeu GIF version

Theorem nfeu 2072
Description: Bound-variable hypothesis builder for existential uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 23-May-2018.)
Hypothesis
Ref Expression
nfeu.1 𝑥𝜑
Assertion
Ref Expression
nfeu 𝑥∃!𝑦𝜑

Proof of Theorem nfeu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1550 . . 3 𝑧𝜑
21sb8eu 2066 . 2 (∃!𝑦𝜑 ↔ ∃!𝑧[𝑧 / 𝑦]𝜑)
3 nfeu.1 . . . 4 𝑥𝜑
43nfsb 1973 . . 3 𝑥[𝑧 / 𝑦]𝜑
54nfeuv 2071 . 2 𝑥∃!𝑧[𝑧 / 𝑦]𝜑
62, 5nfxfr 1496 1 𝑥∃!𝑦𝜑
Colors of variables: wff set class
Syntax hints:  wnf 1482  [wsb 1784  ∃!weu 2053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056
This theorem is referenced by:  hbeu  2074  eusv2nf  4501
  Copyright terms: Public domain W3C validator