| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeu | GIF version | ||
| Description: Bound-variable hypothesis builder for existential uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 23-May-2018.) |
| Ref | Expression |
|---|---|
| nfeu.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfeu | ⊢ Ⅎ𝑥∃!𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1550 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 2 | 1 | sb8eu 2066 | . 2 ⊢ (∃!𝑦𝜑 ↔ ∃!𝑧[𝑧 / 𝑦]𝜑) |
| 3 | nfeu.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 4 | 3 | nfsb 1973 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑦]𝜑 |
| 5 | 4 | nfeuv 2071 | . 2 ⊢ Ⅎ𝑥∃!𝑧[𝑧 / 𝑦]𝜑 |
| 6 | 2, 5 | nfxfr 1496 | 1 ⊢ Ⅎ𝑥∃!𝑦𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1482 [wsb 1784 ∃!weu 2053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 |
| This theorem is referenced by: hbeu 2074 eusv2nf 4501 |
| Copyright terms: Public domain | W3C validator |