![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfeu | GIF version |
Description: Bound-variable hypothesis builder for existential uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 23-May-2018.) |
Ref | Expression |
---|---|
nfeu.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfeu | ⊢ Ⅎ𝑥∃!𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1528 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
2 | 1 | sb8eu 2039 | . 2 ⊢ (∃!𝑦𝜑 ↔ ∃!𝑧[𝑧 / 𝑦]𝜑) |
3 | nfeu.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
4 | 3 | nfsb 1946 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑦]𝜑 |
5 | 4 | nfeuv 2044 | . 2 ⊢ Ⅎ𝑥∃!𝑧[𝑧 / 𝑦]𝜑 |
6 | 2, 5 | nfxfr 1474 | 1 ⊢ Ⅎ𝑥∃!𝑦𝜑 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1460 [wsb 1762 ∃!weu 2026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 |
This theorem is referenced by: hbeu 2047 eusv2nf 4457 |
Copyright terms: Public domain | W3C validator |