| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeu | GIF version | ||
| Description: Bound-variable hypothesis builder for existential uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 23-May-2018.) |
| Ref | Expression |
|---|---|
| nfeu.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfeu | ⊢ Ⅎ𝑥∃!𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 2 | 1 | sb8eu 2090 | . 2 ⊢ (∃!𝑦𝜑 ↔ ∃!𝑧[𝑧 / 𝑦]𝜑) |
| 3 | nfeu.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 4 | 3 | nfsb 1997 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑦]𝜑 |
| 5 | 4 | nfeuv 2095 | . 2 ⊢ Ⅎ𝑥∃!𝑧[𝑧 / 𝑦]𝜑 |
| 6 | 2, 5 | nfxfr 1520 | 1 ⊢ Ⅎ𝑥∃!𝑦𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1506 [wsb 1808 ∃!weu 2077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 |
| This theorem is referenced by: hbeu 2098 eusv2nf 4546 |
| Copyright terms: Public domain | W3C validator |