| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfeud | GIF version | ||
| Description: Deduction version of nfeu 2064. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 25-May-2018.) | 
| Ref | Expression | 
|---|---|
| nfeud.1 | ⊢ Ⅎ𝑦𝜑 | 
| nfeud.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) | 
| Ref | Expression | 
|---|---|
| nfeud | ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | . . 3 ⊢ Ⅎ𝑧𝜓 | |
| 2 | 1 | sb8eu 2058 | . 2 ⊢ (∃!𝑦𝜓 ↔ ∃!𝑧[𝑧 / 𝑦]𝜓) | 
| 3 | nfv 1542 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 4 | nfeud.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 5 | nfeud.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 6 | 4, 5 | nfsbd 1996 | . . 3 ⊢ (𝜑 → Ⅎ𝑥[𝑧 / 𝑦]𝜓) | 
| 7 | 3, 6 | nfeudv 2060 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃!𝑧[𝑧 / 𝑦]𝜓) | 
| 8 | 2, 7 | nfxfrd 1489 | 1 ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 Ⅎwnf 1474 [wsb 1776 ∃!weu 2045 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 | 
| This theorem is referenced by: nfmod 2062 hbeud 2067 nfreudxy 2671 | 
| Copyright terms: Public domain | W3C validator |