![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfeud | GIF version |
Description: Deduction version of nfeu 2061. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 25-May-2018.) |
Ref | Expression |
---|---|
nfeud.1 | ⊢ Ⅎ𝑦𝜑 |
nfeud.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfeud | ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . . 3 ⊢ Ⅎ𝑧𝜓 | |
2 | 1 | sb8eu 2055 | . 2 ⊢ (∃!𝑦𝜓 ↔ ∃!𝑧[𝑧 / 𝑦]𝜓) |
3 | nfv 1539 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
4 | nfeud.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
5 | nfeud.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
6 | 4, 5 | nfsbd 1993 | . . 3 ⊢ (𝜑 → Ⅎ𝑥[𝑧 / 𝑦]𝜓) |
7 | 3, 6 | nfeudv 2057 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃!𝑧[𝑧 / 𝑦]𝜓) |
8 | 2, 7 | nfxfrd 1486 | 1 ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1471 [wsb 1773 ∃!weu 2042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 |
This theorem is referenced by: nfmod 2059 hbeud 2064 nfreudxy 2668 |
Copyright terms: Public domain | W3C validator |