ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeud GIF version

Theorem nfeud 2073
Description: Deduction version of nfeu 2076. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 25-May-2018.)
Hypotheses
Ref Expression
nfeud.1 𝑦𝜑
nfeud.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfeud (𝜑 → Ⅎ𝑥∃!𝑦𝜓)

Proof of Theorem nfeud
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1554 . . 3 𝑧𝜓
21sb8eu 2070 . 2 (∃!𝑦𝜓 ↔ ∃!𝑧[𝑧 / 𝑦]𝜓)
3 nfv 1554 . . 3 𝑧𝜑
4 nfeud.1 . . . 4 𝑦𝜑
5 nfeud.2 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
64, 5nfsbd 2008 . . 3 (𝜑 → Ⅎ𝑥[𝑧 / 𝑦]𝜓)
73, 6nfeudv 2072 . 2 (𝜑 → Ⅎ𝑥∃!𝑧[𝑧 / 𝑦]𝜓)
82, 7nfxfrd 1501 1 (𝜑 → Ⅎ𝑥∃!𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1486  [wsb 1788  ∃!weu 2057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060
This theorem is referenced by:  nfmod  2074  hbeud  2079  nfreudxy  2685
  Copyright terms: Public domain W3C validator