ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeud GIF version

Theorem nfeud 2058
Description: Deduction version of nfeu 2061. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 25-May-2018.)
Hypotheses
Ref Expression
nfeud.1 𝑦𝜑
nfeud.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfeud (𝜑 → Ⅎ𝑥∃!𝑦𝜓)

Proof of Theorem nfeud
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1539 . . 3 𝑧𝜓
21sb8eu 2055 . 2 (∃!𝑦𝜓 ↔ ∃!𝑧[𝑧 / 𝑦]𝜓)
3 nfv 1539 . . 3 𝑧𝜑
4 nfeud.1 . . . 4 𝑦𝜑
5 nfeud.2 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
64, 5nfsbd 1993 . . 3 (𝜑 → Ⅎ𝑥[𝑧 / 𝑦]𝜓)
73, 6nfeudv 2057 . 2 (𝜑 → Ⅎ𝑥∃!𝑧[𝑧 / 𝑦]𝜓)
82, 7nfxfrd 1486 1 (𝜑 → Ⅎ𝑥∃!𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1471  [wsb 1773  ∃!weu 2042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045
This theorem is referenced by:  nfmod  2059  hbeud  2064  nfreudxy  2668
  Copyright terms: Public domain W3C validator