ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq GIF version

Theorem nfeq 2261
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfnfc.1 𝑥𝐴
nfeq.2 𝑥𝐵
Assertion
Ref Expression
nfeq 𝑥 𝐴 = 𝐵

Proof of Theorem nfeq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2107 . 2 (𝐴 = 𝐵 ↔ ∀𝑧(𝑧𝐴𝑧𝐵))
2 nfnfc.1 . . . . 5 𝑥𝐴
32nfcri 2247 . . . 4 𝑥 𝑧𝐴
4 nfeq.2 . . . . 5 𝑥𝐵
54nfcri 2247 . . . 4 𝑥 𝑧𝐵
63, 5nfbi 1549 . . 3 𝑥(𝑧𝐴𝑧𝐵)
76nfal 1536 . 2 𝑥𝑧(𝑧𝐴𝑧𝐵)
81, 7nfxfr 1431 1 𝑥 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1310   = wceq 1312  wnf 1417  wcel 1461  wnfc 2240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-cleq 2106  df-clel 2109  df-nfc 2242
This theorem is referenced by:  nfel  2262  nfeq1  2263  nfeq2  2265  nfne  2373  raleqf  2594  rexeqf  2595  reueq1f  2596  rmoeq1f  2597  rabeqf  2645  sbceqg  2983  csbhypf  3002  nfiotadxy  5047  nffn  5175  nffo  5300  fvmptdf  5460  mpteqb  5463  fvmptf  5465  eqfnfv2f  5474  dff13f  5623  ovmpos  5846  ov2gf  5847  ovmpodxf  5848  ovmpodf  5854  eqerlem  6412  sumeq2  11014  fsumadd  11061  txcnp  12276  cnmpt11  12288  cnmpt21  12296  cnmptcom  12303
  Copyright terms: Public domain W3C validator