Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfeq | GIF version |
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfeq | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2164 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵)) | |
2 | nfnfc.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2306 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
4 | nfeq.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfcri 2306 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
6 | 3, 5 | nfbi 1582 | . . 3 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵) |
7 | 6 | nfal 1569 | . 2 ⊢ Ⅎ𝑥∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵) |
8 | 1, 7 | nfxfr 1467 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1346 = wceq 1348 Ⅎwnf 1453 ∈ wcel 2141 Ⅎwnfc 2299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 |
This theorem is referenced by: nfel 2321 nfeq1 2322 nfeq2 2324 nfne 2433 raleqf 2661 rexeqf 2662 reueq1f 2663 rmoeq1f 2664 rabeqf 2720 sbceqg 3065 csbhypf 3087 nfiotadw 5163 nffn 5294 nffo 5419 fvmptdf 5583 mpteqb 5586 fvmptf 5588 eqfnfv2f 5597 dff13f 5749 ovmpos 5976 ov2gf 5977 ovmpodxf 5978 ovmpodf 5984 eqerlem 6544 sumeq2 11322 fsumadd 11369 prodeq1f 11515 prodeq2 11520 txcnp 13065 cnmpt11 13077 cnmpt21 13085 cnmptcom 13092 |
Copyright terms: Public domain | W3C validator |