| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeq | GIF version | ||
| Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
| nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfeq | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2198 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵)) | |
| 2 | nfnfc.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2341 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
| 4 | nfeq.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2341 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
| 6 | 3, 5 | nfbi 1611 | . . 3 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵) |
| 7 | 6 | nfal 1598 | . 2 ⊢ Ⅎ𝑥∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵) |
| 8 | 1, 7 | nfxfr 1496 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1370 = wceq 1372 Ⅎwnf 1482 ∈ wcel 2175 Ⅎwnfc 2334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-cleq 2197 df-clel 2200 df-nfc 2336 |
| This theorem is referenced by: nfel 2356 nfeq1 2357 nfeq2 2359 nfne 2468 raleqf 2697 rexeqf 2698 reueq1f 2699 rmoeq1f 2700 rabeqf 2761 sbceqg 3108 csbhypf 3131 nfiotadw 5234 nffn 5369 nffo 5496 fvmptdf 5666 mpteqb 5669 fvmptf 5671 eqfnfv2f 5680 dff13f 5838 ovmpos 6068 ov2gf 6069 ovmpodxf 6070 ovmpodf 6076 eqerlem 6650 sumeq2 11612 fsumadd 11659 prodeq1f 11805 prodeq2 11810 txcnp 14685 cnmpt11 14697 cnmpt21 14705 cnmptcom 14712 dvmptfsum 15139 lgseisenlem2 15490 |
| Copyright terms: Public domain | W3C validator |