ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq GIF version

Theorem nfeq 2357
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfnfc.1 𝑥𝐴
nfeq.2 𝑥𝐵
Assertion
Ref Expression
nfeq 𝑥 𝐴 = 𝐵

Proof of Theorem nfeq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2200 . 2 (𝐴 = 𝐵 ↔ ∀𝑧(𝑧𝐴𝑧𝐵))
2 nfnfc.1 . . . . 5 𝑥𝐴
32nfcri 2343 . . . 4 𝑥 𝑧𝐴
4 nfeq.2 . . . . 5 𝑥𝐵
54nfcri 2343 . . . 4 𝑥 𝑧𝐵
63, 5nfbi 1613 . . 3 𝑥(𝑧𝐴𝑧𝐵)
76nfal 1600 . 2 𝑥𝑧(𝑧𝐴𝑧𝐵)
81, 7nfxfr 1498 1 𝑥 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1371   = wceq 1373  wnf 1484  wcel 2177  wnfc 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-cleq 2199  df-clel 2202  df-nfc 2338
This theorem is referenced by:  nfel  2358  nfeq1  2359  nfeq2  2361  nfne  2470  raleqf  2699  rexeqf  2700  reueq1f  2701  rmoeq1f  2702  rabeqf  2763  sbceqg  3113  csbhypf  3136  nfiotadw  5244  nffn  5379  nffo  5509  fvmptdf  5680  mpteqb  5683  fvmptf  5685  eqfnfv2f  5694  dff13f  5852  ovmpos  6082  ov2gf  6083  ovmpodxf  6084  ovmpodf  6090  eqerlem  6664  sumeq2  11745  fsumadd  11792  prodeq1f  11938  prodeq2  11943  txcnp  14818  cnmpt11  14830  cnmpt21  14838  cnmptcom  14845  dvmptfsum  15272  lgseisenlem2  15623
  Copyright terms: Public domain W3C validator