| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfeq | GIF version | ||
| Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.) | 
| Ref | Expression | 
|---|---|
| nfnfc.1 | ⊢ Ⅎ𝑥𝐴 | 
| nfeq.2 | ⊢ Ⅎ𝑥𝐵 | 
| Ref | Expression | 
|---|---|
| nfeq | ⊢ Ⅎ𝑥 𝐴 = 𝐵 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfcleq 2190 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵)) | |
| 2 | nfnfc.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2333 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 | 
| 4 | nfeq.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2333 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 | 
| 6 | 3, 5 | nfbi 1603 | . . 3 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵) | 
| 7 | 6 | nfal 1590 | . 2 ⊢ Ⅎ𝑥∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵) | 
| 8 | 1, 7 | nfxfr 1488 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 ∀wal 1362 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 | 
| This theorem is referenced by: nfel 2348 nfeq1 2349 nfeq2 2351 nfne 2460 raleqf 2689 rexeqf 2690 reueq1f 2691 rmoeq1f 2692 rabeqf 2753 sbceqg 3100 csbhypf 3123 nfiotadw 5222 nffn 5354 nffo 5479 fvmptdf 5649 mpteqb 5652 fvmptf 5654 eqfnfv2f 5663 dff13f 5817 ovmpos 6046 ov2gf 6047 ovmpodxf 6048 ovmpodf 6054 eqerlem 6623 sumeq2 11524 fsumadd 11571 prodeq1f 11717 prodeq2 11722 txcnp 14507 cnmpt11 14519 cnmpt21 14527 cnmptcom 14534 dvmptfsum 14961 lgseisenlem2 15312 | 
| Copyright terms: Public domain | W3C validator |