ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq GIF version

Theorem nfeq 2355
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfnfc.1 𝑥𝐴
nfeq.2 𝑥𝐵
Assertion
Ref Expression
nfeq 𝑥 𝐴 = 𝐵

Proof of Theorem nfeq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2198 . 2 (𝐴 = 𝐵 ↔ ∀𝑧(𝑧𝐴𝑧𝐵))
2 nfnfc.1 . . . . 5 𝑥𝐴
32nfcri 2341 . . . 4 𝑥 𝑧𝐴
4 nfeq.2 . . . . 5 𝑥𝐵
54nfcri 2341 . . . 4 𝑥 𝑧𝐵
63, 5nfbi 1611 . . 3 𝑥(𝑧𝐴𝑧𝐵)
76nfal 1598 . 2 𝑥𝑧(𝑧𝐴𝑧𝐵)
81, 7nfxfr 1496 1 𝑥 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1370   = wceq 1372  wnf 1482  wcel 2175  wnfc 2334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-cleq 2197  df-clel 2200  df-nfc 2336
This theorem is referenced by:  nfel  2356  nfeq1  2357  nfeq2  2359  nfne  2468  raleqf  2697  rexeqf  2698  reueq1f  2699  rmoeq1f  2700  rabeqf  2761  sbceqg  3108  csbhypf  3131  nfiotadw  5234  nffn  5369  nffo  5496  fvmptdf  5666  mpteqb  5669  fvmptf  5671  eqfnfv2f  5680  dff13f  5838  ovmpos  6068  ov2gf  6069  ovmpodxf  6070  ovmpodf  6076  eqerlem  6650  sumeq2  11612  fsumadd  11659  prodeq1f  11805  prodeq2  11810  txcnp  14685  cnmpt11  14697  cnmpt21  14705  cnmptcom  14712  dvmptfsum  15139  lgseisenlem2  15490
  Copyright terms: Public domain W3C validator