![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfeq | GIF version |
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfeq | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2107 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵)) | |
2 | nfnfc.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2247 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
4 | nfeq.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfcri 2247 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
6 | 3, 5 | nfbi 1549 | . . 3 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵) |
7 | 6 | nfal 1536 | . 2 ⊢ Ⅎ𝑥∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵) |
8 | 1, 7 | nfxfr 1431 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1310 = wceq 1312 Ⅎwnf 1417 ∈ wcel 1461 Ⅎwnfc 2240 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-cleq 2106 df-clel 2109 df-nfc 2242 |
This theorem is referenced by: nfel 2262 nfeq1 2263 nfeq2 2265 nfne 2373 raleqf 2594 rexeqf 2595 reueq1f 2596 rmoeq1f 2597 rabeqf 2645 sbceqg 2983 csbhypf 3002 nfiotadxy 5047 nffn 5175 nffo 5300 fvmptdf 5460 mpteqb 5463 fvmptf 5465 eqfnfv2f 5474 dff13f 5623 ovmpos 5846 ov2gf 5847 ovmpodxf 5848 ovmpodf 5854 eqerlem 6412 sumeq2 11014 fsumadd 11061 txcnp 12276 cnmpt11 12288 cnmpt21 12296 cnmptcom 12303 |
Copyright terms: Public domain | W3C validator |