| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeq | GIF version | ||
| Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
| nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfeq | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2200 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵)) | |
| 2 | nfnfc.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2343 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
| 4 | nfeq.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2343 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
| 6 | 3, 5 | nfbi 1613 | . . 3 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵) |
| 7 | 6 | nfal 1600 | . 2 ⊢ Ⅎ𝑥∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵) |
| 8 | 1, 7 | nfxfr 1498 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1371 = wceq 1373 Ⅎwnf 1484 ∈ wcel 2177 Ⅎwnfc 2336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-cleq 2199 df-clel 2202 df-nfc 2338 |
| This theorem is referenced by: nfel 2358 nfeq1 2359 nfeq2 2361 nfne 2470 raleqf 2699 rexeqf 2700 reueq1f 2701 rmoeq1f 2702 rabeqf 2763 sbceqg 3113 csbhypf 3136 nfiotadw 5244 nffn 5379 nffo 5509 fvmptdf 5680 mpteqb 5683 fvmptf 5685 eqfnfv2f 5694 dff13f 5852 ovmpos 6082 ov2gf 6083 ovmpodxf 6084 ovmpodf 6090 eqerlem 6664 sumeq2 11745 fsumadd 11792 prodeq1f 11938 prodeq2 11943 txcnp 14818 cnmpt11 14830 cnmpt21 14838 cnmptcom 14845 dvmptfsum 15272 lgseisenlem2 15623 |
| Copyright terms: Public domain | W3C validator |