ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq GIF version

Theorem nfeq 2347
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfnfc.1 𝑥𝐴
nfeq.2 𝑥𝐵
Assertion
Ref Expression
nfeq 𝑥 𝐴 = 𝐵

Proof of Theorem nfeq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2190 . 2 (𝐴 = 𝐵 ↔ ∀𝑧(𝑧𝐴𝑧𝐵))
2 nfnfc.1 . . . . 5 𝑥𝐴
32nfcri 2333 . . . 4 𝑥 𝑧𝐴
4 nfeq.2 . . . . 5 𝑥𝐵
54nfcri 2333 . . . 4 𝑥 𝑧𝐵
63, 5nfbi 1603 . . 3 𝑥(𝑧𝐴𝑧𝐵)
76nfal 1590 . 2 𝑥𝑧(𝑧𝐴𝑧𝐵)
81, 7nfxfr 1488 1 𝑥 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1362   = wceq 1364  wnf 1474  wcel 2167  wnfc 2326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-nfc 2328
This theorem is referenced by:  nfel  2348  nfeq1  2349  nfeq2  2351  nfne  2460  raleqf  2689  rexeqf  2690  reueq1f  2691  rmoeq1f  2692  rabeqf  2753  sbceqg  3100  csbhypf  3123  nfiotadw  5223  nffn  5355  nffo  5482  fvmptdf  5652  mpteqb  5655  fvmptf  5657  eqfnfv2f  5666  dff13f  5820  ovmpos  6050  ov2gf  6051  ovmpodxf  6052  ovmpodf  6058  eqerlem  6632  sumeq2  11541  fsumadd  11588  prodeq1f  11734  prodeq2  11739  txcnp  14591  cnmpt11  14603  cnmpt21  14611  cnmptcom  14618  dvmptfsum  15045  lgseisenlem2  15396
  Copyright terms: Public domain W3C validator