Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfeq | GIF version |
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfeq | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2159 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵)) | |
2 | nfnfc.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2302 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
4 | nfeq.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfcri 2302 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
6 | 3, 5 | nfbi 1577 | . . 3 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵) |
7 | 6 | nfal 1564 | . 2 ⊢ Ⅎ𝑥∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵) |
8 | 1, 7 | nfxfr 1462 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1341 = wceq 1343 Ⅎwnf 1448 ∈ wcel 2136 Ⅎwnfc 2295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 df-nfc 2297 |
This theorem is referenced by: nfel 2317 nfeq1 2318 nfeq2 2320 nfne 2429 raleqf 2657 rexeqf 2658 reueq1f 2659 rmoeq1f 2660 rabeqf 2716 sbceqg 3061 csbhypf 3083 nfiotadw 5156 nffn 5284 nffo 5409 fvmptdf 5573 mpteqb 5576 fvmptf 5578 eqfnfv2f 5587 dff13f 5738 ovmpos 5965 ov2gf 5966 ovmpodxf 5967 ovmpodf 5973 eqerlem 6532 sumeq2 11300 fsumadd 11347 prodeq1f 11493 prodeq2 11498 txcnp 12911 cnmpt11 12923 cnmpt21 12931 cnmptcom 12938 |
Copyright terms: Public domain | W3C validator |