ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq GIF version

Theorem nfeq 2327
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfnfc.1 𝑥𝐴
nfeq.2 𝑥𝐵
Assertion
Ref Expression
nfeq 𝑥 𝐴 = 𝐵

Proof of Theorem nfeq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2171 . 2 (𝐴 = 𝐵 ↔ ∀𝑧(𝑧𝐴𝑧𝐵))
2 nfnfc.1 . . . . 5 𝑥𝐴
32nfcri 2313 . . . 4 𝑥 𝑧𝐴
4 nfeq.2 . . . . 5 𝑥𝐵
54nfcri 2313 . . . 4 𝑥 𝑧𝐵
63, 5nfbi 1589 . . 3 𝑥(𝑧𝐴𝑧𝐵)
76nfal 1576 . 2 𝑥𝑧(𝑧𝐴𝑧𝐵)
81, 7nfxfr 1474 1 𝑥 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1351   = wceq 1353  wnf 1460  wcel 2148  wnfc 2306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-cleq 2170  df-clel 2173  df-nfc 2308
This theorem is referenced by:  nfel  2328  nfeq1  2329  nfeq2  2331  nfne  2440  raleqf  2669  rexeqf  2670  reueq1f  2671  rmoeq1f  2672  rabeqf  2729  sbceqg  3075  csbhypf  3097  nfiotadw  5183  nffn  5314  nffo  5439  fvmptdf  5605  mpteqb  5608  fvmptf  5610  eqfnfv2f  5619  dff13f  5773  ovmpos  6000  ov2gf  6001  ovmpodxf  6002  ovmpodf  6008  eqerlem  6568  sumeq2  11369  fsumadd  11416  prodeq1f  11562  prodeq2  11567  txcnp  13810  cnmpt11  13822  cnmpt21  13830  cnmptcom  13837  lgseisenlem2  14490
  Copyright terms: Public domain W3C validator