ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq GIF version

Theorem nfeq 2380
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfnfc.1 𝑥𝐴
nfeq.2 𝑥𝐵
Assertion
Ref Expression
nfeq 𝑥 𝐴 = 𝐵

Proof of Theorem nfeq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2223 . 2 (𝐴 = 𝐵 ↔ ∀𝑧(𝑧𝐴𝑧𝐵))
2 nfnfc.1 . . . . 5 𝑥𝐴
32nfcri 2366 . . . 4 𝑥 𝑧𝐴
4 nfeq.2 . . . . 5 𝑥𝐵
54nfcri 2366 . . . 4 𝑥 𝑧𝐵
63, 5nfbi 1635 . . 3 𝑥(𝑧𝐴𝑧𝐵)
76nfal 1622 . 2 𝑥𝑧(𝑧𝐴𝑧𝐵)
81, 7nfxfr 1520 1 𝑥 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1393   = wceq 1395  wnf 1506  wcel 2200  wnfc 2359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361
This theorem is referenced by:  nfel  2381  nfeq1  2382  nfeq2  2384  nfne  2493  raleqf  2724  rexeqf  2725  reueq1f  2726  rmoeq1f  2727  rabeqf  2789  sbceqg  3140  csbhypf  3163  nfiotadw  5280  nffn  5416  nffo  5546  fvmptdf  5721  mpteqb  5724  fvmptf  5726  eqfnfv2f  5735  dff13f  5893  ovmpos  6127  ov2gf  6128  ovmpodxf  6129  ovmpodf  6135  eqerlem  6709  sumeq2  11865  fsumadd  11912  prodeq1f  12058  prodeq2  12063  txcnp  14939  cnmpt11  14951  cnmpt21  14959  cnmptcom  14966  dvmptfsum  15393  lgseisenlem2  15744
  Copyright terms: Public domain W3C validator