| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeq | GIF version | ||
| Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
| nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfeq | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2223 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵)) | |
| 2 | nfnfc.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2366 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
| 4 | nfeq.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2366 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
| 6 | 3, 5 | nfbi 1635 | . . 3 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵) |
| 7 | 6 | nfal 1622 | . 2 ⊢ Ⅎ𝑥∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵) |
| 8 | 1, 7 | nfxfr 1520 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1393 = wceq 1395 Ⅎwnf 1506 ∈ wcel 2200 Ⅎwnfc 2359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 |
| This theorem is referenced by: nfel 2381 nfeq1 2382 nfeq2 2384 nfne 2493 raleqf 2724 rexeqf 2725 reueq1f 2726 rmoeq1f 2727 rabeqf 2789 sbceqg 3140 csbhypf 3163 nfiotadw 5280 nffn 5416 nffo 5546 fvmptdf 5721 mpteqb 5724 fvmptf 5726 eqfnfv2f 5735 dff13f 5893 ovmpos 6127 ov2gf 6128 ovmpodxf 6129 ovmpodf 6135 eqerlem 6709 sumeq2 11865 fsumadd 11912 prodeq1f 12058 prodeq2 12063 txcnp 14939 cnmpt11 14951 cnmpt21 14959 cnmptcom 14966 dvmptfsum 15393 lgseisenlem2 15744 |
| Copyright terms: Public domain | W3C validator |