| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clelsb1f | GIF version | ||
| Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2184). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.) |
| Ref | Expression |
|---|---|
| clelsb1f.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| clelsb1f | ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clelsb1f.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfcri 2343 | . . 3 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐴 |
| 3 | 2 | sbco2 1994 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑦 / 𝑤]𝑤 ∈ 𝐴) |
| 4 | nfv 1552 | . . . 4 ⊢ Ⅎ𝑤 𝑥 ∈ 𝐴 | |
| 5 | eleq1w 2267 | . . . 4 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
| 6 | 4, 5 | sbie 1815 | . . 3 ⊢ ([𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
| 7 | 6 | sbbii 1789 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝐴) |
| 8 | nfv 1552 | . . 3 ⊢ Ⅎ𝑤 𝑦 ∈ 𝐴 | |
| 9 | eleq1w 2267 | . . 3 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 10 | 8, 9 | sbie 1815 | . 2 ⊢ ([𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| 11 | 3, 7, 10 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1786 ∈ wcel 2177 Ⅎwnfc 2336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-cleq 2199 df-clel 2202 df-nfc 2338 |
| This theorem is referenced by: rmo3f 2971 |
| Copyright terms: Public domain | W3C validator |