ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clelsb1f GIF version

Theorem clelsb1f 2356
Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2187). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.)
Hypothesis
Ref Expression
clelsb1f.1 𝑥𝐴
Assertion
Ref Expression
clelsb1f ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)

Proof of Theorem clelsb1f
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 clelsb1f.1 . . . 4 𝑥𝐴
21nfcri 2346 . . 3 𝑥 𝑤𝐴
32sbco2 1996 . 2 ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤𝐴 ↔ [𝑦 / 𝑤]𝑤𝐴)
4 nfv 1554 . . . 4 𝑤 𝑥𝐴
5 eleq1w 2270 . . . 4 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
64, 5sbie 1817 . . 3 ([𝑥 / 𝑤]𝑤𝐴𝑥𝐴)
76sbbii 1791 . 2 ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤𝐴 ↔ [𝑦 / 𝑥]𝑥𝐴)
8 nfv 1554 . . 3 𝑤 𝑦𝐴
9 eleq1w 2270 . . 3 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
108, 9sbie 1817 . 2 ([𝑦 / 𝑤]𝑤𝐴𝑦𝐴)
113, 7, 103bitr3i 210 1 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1788  wcel 2180  wnfc 2339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-cleq 2202  df-clel 2205  df-nfc 2341
This theorem is referenced by:  rmo3f  2980
  Copyright terms: Public domain W3C validator