Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > clelsb1f | GIF version |
Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2143). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.) |
Ref | Expression |
---|---|
clelsb1f.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
clelsb1f | ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clelsb1f.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfcri 2301 | . . 3 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐴 |
3 | 2 | sbco2 1953 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑦 / 𝑤]𝑤 ∈ 𝐴) |
4 | nfv 1516 | . . . 4 ⊢ Ⅎ𝑤 𝑥 ∈ 𝐴 | |
5 | eleq1w 2226 | . . . 4 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
6 | 4, 5 | sbie 1779 | . . 3 ⊢ ([𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
7 | 6 | sbbii 1753 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝐴) |
8 | nfv 1516 | . . 3 ⊢ Ⅎ𝑤 𝑦 ∈ 𝐴 | |
9 | eleq1w 2226 | . . 3 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
10 | 8, 9 | sbie 1779 | . 2 ⊢ ([𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
11 | 3, 7, 10 | 3bitr3i 209 | 1 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 [wsb 1750 ∈ wcel 2136 Ⅎwnfc 2294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 df-nfc 2296 |
This theorem is referenced by: rmo3f 2922 |
Copyright terms: Public domain | W3C validator |