ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfab1 GIF version

Theorem nfab1 2321
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfab1 𝑥{𝑥𝜑}

Proof of Theorem nfab1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfsab1 2167 . 2 𝑥 𝑦 ∈ {𝑥𝜑}
21nfci 2309 1 𝑥{𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  {cab 2163  wnfc 2306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-nfc 2308
This theorem is referenced by:  abid2f  2345  nfrab1  2657  elabgt  2880  elabgf  2881  nfsbc1d  2981  ss2ab  3225  abn0r  3449  euabsn  3664  iunab  3935  iinab  3950  sniota  5209  nfixp1  6720  elabgft1  14615  elabgf2  14617
  Copyright terms: Public domain W3C validator