ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfab1 GIF version

Theorem nfab1 2354
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfab1 𝑥{𝑥𝜑}

Proof of Theorem nfab1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfsab1 2199 . 2 𝑥 𝑦 ∈ {𝑥𝜑}
21nfci 2342 1 𝑥{𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  {cab 2195  wnfc 2339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1473  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-11 1532  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-clab 2196  df-nfc 2341
This theorem is referenced by:  abid2f  2378  nfrab1  2691  elabgt  2924  elabgf  2925  nfsbc1d  3025  ss2ab  3272  abn0r  3496  euabsn  3716  iunab  3991  iinab  4006  iotaexab  5273  sniota  5285  nfixp1  6835  elabgft1  16052  elabgf2  16054
  Copyright terms: Public domain W3C validator