ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfab1 GIF version

Theorem nfab1 2374
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfab1 𝑥{𝑥𝜑}

Proof of Theorem nfab1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfsab1 2219 . 2 𝑥 𝑦 ∈ {𝑥𝜑}
21nfci 2362 1 𝑥{𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  {cab 2215  wnfc 2359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-nfc 2361
This theorem is referenced by:  abid2f  2398  nfrab1  2711  elabgt  2944  elabgf  2945  nfsbc1d  3045  ss2ab  3292  abn0r  3516  euabsn  3736  iunab  4012  iinab  4027  iotaexab  5297  sniota  5309  nfixp1  6873  elabgft1  16166  elabgf2  16168
  Copyright terms: Public domain W3C validator