ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfab1 GIF version

Theorem nfab1 2314
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfab1 𝑥{𝑥𝜑}

Proof of Theorem nfab1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfsab1 2160 . 2 𝑥 𝑦 ∈ {𝑥𝜑}
21nfci 2302 1 𝑥{𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  {cab 2156  wnfc 2299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-nfc 2301
This theorem is referenced by:  abid2f  2338  nfrab1  2649  elabgt  2871  elabgf  2872  nfsbc1d  2971  ss2ab  3215  abn0r  3439  euabsn  3653  iunab  3919  iinab  3934  sniota  5189  nfixp1  6696  elabgft1  13813  elabgf2  13815
  Copyright terms: Public domain W3C validator