ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfab1 GIF version

Theorem nfab1 2341
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfab1 𝑥{𝑥𝜑}

Proof of Theorem nfab1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfsab1 2186 . 2 𝑥 𝑦 ∈ {𝑥𝜑}
21nfci 2329 1 𝑥{𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  {cab 2182  wnfc 2326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-nfc 2328
This theorem is referenced by:  abid2f  2365  nfrab1  2677  elabgt  2905  elabgf  2906  nfsbc1d  3006  ss2ab  3251  abn0r  3475  euabsn  3692  iunab  3963  iinab  3978  iotaexab  5237  sniota  5249  nfixp1  6777  elabgft1  15424  elabgf2  15426
  Copyright terms: Public domain W3C validator