ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfab1 GIF version

Theorem nfab1 2351
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfab1 𝑥{𝑥𝜑}

Proof of Theorem nfab1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfsab1 2196 . 2 𝑥 𝑦 ∈ {𝑥𝜑}
21nfci 2339 1 𝑥{𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  {cab 2192  wnfc 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-nfc 2338
This theorem is referenced by:  abid2f  2375  nfrab1  2687  elabgt  2916  elabgf  2917  nfsbc1d  3017  ss2ab  3263  abn0r  3487  euabsn  3705  iunab  3977  iinab  3992  iotaexab  5256  sniota  5268  nfixp1  6815  elabgft1  15828  elabgf2  15830
  Copyright terms: Public domain W3C validator