![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfab1 | GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfab1 | ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsab1 2183 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
2 | 1 | nfci 2326 | 1 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: {cab 2179 Ⅎwnfc 2323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-nfc 2325 |
This theorem is referenced by: abid2f 2362 nfrab1 2674 elabgt 2902 elabgf 2903 nfsbc1d 3003 ss2ab 3248 abn0r 3472 euabsn 3689 iunab 3960 iinab 3975 iotaexab 5234 sniota 5246 nfixp1 6774 elabgft1 15340 elabgf2 15342 |
Copyright terms: Public domain | W3C validator |