ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfab1 GIF version

Theorem nfab1 2338
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfab1 𝑥{𝑥𝜑}

Proof of Theorem nfab1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfsab1 2183 . 2 𝑥 𝑦 ∈ {𝑥𝜑}
21nfci 2326 1 𝑥{𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  {cab 2179  wnfc 2323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-nfc 2325
This theorem is referenced by:  abid2f  2362  nfrab1  2674  elabgt  2902  elabgf  2903  nfsbc1d  3003  ss2ab  3248  abn0r  3472  euabsn  3689  iunab  3960  iinab  3975  iotaexab  5234  sniota  5246  nfixp1  6774  elabgft1  15340  elabgf2  15342
  Copyright terms: Public domain W3C validator