![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfab1 | GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfab1 | ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsab1 2167 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
2 | 1 | nfci 2309 | 1 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: {cab 2163 Ⅎwnfc 2306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-nfc 2308 |
This theorem is referenced by: abid2f 2345 nfrab1 2657 elabgt 2880 elabgf 2881 nfsbc1d 2981 ss2ab 3225 abn0r 3449 euabsn 3664 iunab 3935 iinab 3950 sniota 5209 nfixp1 6720 elabgft1 14615 elabgf2 14617 |
Copyright terms: Public domain | W3C validator |