| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfab1 | GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfab1 | ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsab1 2186 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
| 2 | 1 | nfci 2329 | 1 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: {cab 2182 Ⅎwnfc 2326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-nfc 2328 |
| This theorem is referenced by: abid2f 2365 nfrab1 2677 elabgt 2905 elabgf 2906 nfsbc1d 3006 ss2ab 3251 abn0r 3475 euabsn 3692 iunab 3963 iinab 3978 iotaexab 5237 sniota 5249 nfixp1 6777 elabgft1 15424 elabgf2 15426 |
| Copyright terms: Public domain | W3C validator |