Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfab1 | GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfab1 | ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsab1 2160 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
2 | 1 | nfci 2302 | 1 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: {cab 2156 Ⅎwnfc 2299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-nfc 2301 |
This theorem is referenced by: abid2f 2338 nfrab1 2649 elabgt 2871 elabgf 2872 nfsbc1d 2971 ss2ab 3215 abn0r 3439 euabsn 3653 iunab 3919 iinab 3934 sniota 5189 nfixp1 6696 elabgft1 13813 elabgf2 13815 |
Copyright terms: Public domain | W3C validator |