ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfab1 GIF version

Theorem nfab1 2310
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfab1 𝑥{𝑥𝜑}

Proof of Theorem nfab1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfsab1 2155 . 2 𝑥 𝑦 ∈ {𝑥𝜑}
21nfci 2298 1 𝑥{𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  {cab 2151  wnfc 2295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-nfc 2297
This theorem is referenced by:  abid2f  2334  nfrab1  2645  elabgt  2867  elabgf  2868  nfsbc1d  2967  ss2ab  3210  abn0r  3433  euabsn  3646  iunab  3912  iinab  3927  sniota  5180  nfixp1  6684  elabgft1  13659  elabgf2  13661
  Copyright terms: Public domain W3C validator