ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfralw GIF version

Theorem nfralw 2527
Description: Bound-variable hypothesis builder for restricted quantification. See nfralya 2530 for a version with 𝑦 and 𝐴 distinct instead of 𝑥 and 𝑦. (Contributed by NM, 1-Sep-1999.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
nfralw.1 𝑥𝐴
nfralw.2 𝑥𝜑
Assertion
Ref Expression
nfralw 𝑥𝑦𝐴 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfralw
StepHypRef Expression
1 nftru 1477 . . 3 𝑦
2 nfralw.1 . . . 4 𝑥𝐴
32a1i 9 . . 3 (⊤ → 𝑥𝐴)
4 nfralw.2 . . . 4 𝑥𝜑
54a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfraldw 2522 . 2 (⊤ → Ⅎ𝑥𝑦𝐴 𝜑)
76mptru 1373 1 𝑥𝑦𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wtru 1365  wnf 1471  wnfc 2319  wral 2468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473
This theorem is referenced by:  rspc2vd  3140  fprod2dlemstep  11648  fprodcom2fi  11652  nnwofdc  12057
  Copyright terms: Public domain W3C validator