ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfralw GIF version

Theorem nfralw 2503
Description: Bound-variable hypothesis builder for restricted quantification. See nfralya 2506 for a version with 𝑦 and 𝐴 distinct instead of 𝑥 and 𝑦. (Contributed by NM, 1-Sep-1999.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
nfralw.1 𝑥𝐴
nfralw.2 𝑥𝜑
Assertion
Ref Expression
nfralw 𝑥𝑦𝐴 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfralw
StepHypRef Expression
1 nftru 1454 . . 3 𝑦
2 nfralw.1 . . . 4 𝑥𝐴
32a1i 9 . . 3 (⊤ → 𝑥𝐴)
4 nfralw.2 . . . 4 𝑥𝜑
54a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfraldw 2498 . 2 (⊤ → Ⅎ𝑥𝑦𝐴 𝜑)
76mptru 1352 1 𝑥𝑦𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wtru 1344  wnf 1448  wnfc 2295  wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449
This theorem is referenced by:  fprod2dlemstep  11563  fprodcom2fi  11567  nnwofdc  11971
  Copyright terms: Public domain W3C validator