Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfralya | GIF version |
Description: Not-free for restricted universal quantification where 𝑦 and 𝐴 are distinct. See nfralxy 2508 for a version with 𝑥 and 𝑦 distinct instead. (Contributed by Jim Kingdon, 3-Jun-2018.) |
Ref | Expression |
---|---|
nfralya.1 | ⊢ Ⅎ𝑥𝐴 |
nfralya.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfralya | ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1459 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfralya.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfralya.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfraldya 2505 | . 2 ⊢ (⊤ → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑) |
7 | 6 | mptru 1357 | 1 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1349 Ⅎwnf 1453 Ⅎwnfc 2299 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 |
This theorem is referenced by: nfiinya 3902 nfsup 6969 caucvgsrlemgt1 7757 axpre-suploclemres 7863 supinfneg 9554 infsupneg 9555 ctiunctlemudc 12392 trirec0 14076 |
Copyright terms: Public domain | W3C validator |