| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfralya | GIF version | ||
| Description: Not-free for restricted universal quantification where 𝑦 and 𝐴 are distinct. See nfralxy 2544 for a version with 𝑥 and 𝑦 distinct instead. (Contributed by Jim Kingdon, 3-Jun-2018.) |
| Ref | Expression |
|---|---|
| nfralya.1 | ⊢ Ⅎ𝑥𝐴 |
| nfralya.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfralya | ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1489 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfralya.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 4 | nfralya.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 6 | 1, 3, 5 | nfraldya 2541 | . 2 ⊢ (⊤ → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑) |
| 7 | 6 | mptru 1382 | 1 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ⊤wtru 1374 Ⅎwnf 1483 Ⅎwnfc 2335 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 |
| This theorem is referenced by: nfiinya 3956 nfsup 7094 caucvgsrlemgt1 7908 axpre-suploclemres 8014 supinfneg 9716 infsupneg 9717 ctiunctlemudc 12808 trirec0 15983 |
| Copyright terms: Public domain | W3C validator |