| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfrexdya | GIF version | ||
| Description: Not-free for restricted existential quantification where 𝑦 and 𝐴 are distinct. See nfrexdxy 2531 for a version with 𝑥 and 𝑦 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.) | 
| Ref | Expression | 
|---|---|
| nfraldya.2 | ⊢ Ⅎ𝑦𝜑 | 
| nfraldya.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) | 
| nfraldya.4 | ⊢ (𝜑 → Ⅎ𝑥𝜓) | 
| Ref | Expression | 
|---|---|
| nfrexdya | ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rex 2481 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜓 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
| 2 | sban 1974 | . . . . . 6 ⊢ ([𝑧 / 𝑦](𝑦 ∈ 𝐴 ∧ 𝜓) ↔ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 ∧ [𝑧 / 𝑦]𝜓)) | |
| 3 | clelsb1 2301 | . . . . . . 7 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴) | |
| 4 | 3 | anbi1i 458 | . . . . . 6 ⊢ (([𝑧 / 𝑦]𝑦 ∈ 𝐴 ∧ [𝑧 / 𝑦]𝜓) ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑦]𝜓)) | 
| 5 | 2, 4 | bitri 184 | . . . . 5 ⊢ ([𝑧 / 𝑦](𝑦 ∈ 𝐴 ∧ 𝜓) ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑦]𝜓)) | 
| 6 | 5 | exbii 1619 | . . . 4 ⊢ (∃𝑧[𝑧 / 𝑦](𝑦 ∈ 𝐴 ∧ 𝜓) ↔ ∃𝑧(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑦]𝜓)) | 
| 7 | nfv 1542 | . . . . 5 ⊢ Ⅎ𝑧(𝑦 ∈ 𝐴 ∧ 𝜓) | |
| 8 | 7 | sb8e 1871 | . . . 4 ⊢ (∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜓) ↔ ∃𝑧[𝑧 / 𝑦](𝑦 ∈ 𝐴 ∧ 𝜓)) | 
| 9 | df-rex 2481 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 [𝑧 / 𝑦]𝜓 ↔ ∃𝑧(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑦]𝜓)) | |
| 10 | 6, 8, 9 | 3bitr4i 212 | . . 3 ⊢ (∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜓) ↔ ∃𝑧 ∈ 𝐴 [𝑧 / 𝑦]𝜓) | 
| 11 | nfv 1542 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 12 | nfraldya.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 13 | nfraldya.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 14 | nfraldya.4 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 15 | 13, 14 | nfsbd 1996 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥[𝑧 / 𝑦]𝜓) | 
| 16 | 11, 12, 15 | nfrexdxy 2531 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∃𝑧 ∈ 𝐴 [𝑧 / 𝑦]𝜓) | 
| 17 | 10, 16 | nfxfrd 1489 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | 
| 18 | 1, 17 | nfxfrd 1489 | 1 ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 Ⅎwnf 1474 ∃wex 1506 [wsb 1776 ∈ wcel 2167 Ⅎwnfc 2326 ∃wrex 2476 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 | 
| This theorem is referenced by: nfrexya 2538 | 
| Copyright terms: Public domain | W3C validator |