| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfrexdya | GIF version | ||
| Description: Not-free for restricted existential quantification where 𝑦 and 𝐴 are distinct. See nfrexdxy 2539 for a version with 𝑥 and 𝑦 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.) |
| Ref | Expression |
|---|---|
| nfraldya.2 | ⊢ Ⅎ𝑦𝜑 |
| nfraldya.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfraldya.4 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfrexdya | ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2489 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜓 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
| 2 | sban 1982 | . . . . . 6 ⊢ ([𝑧 / 𝑦](𝑦 ∈ 𝐴 ∧ 𝜓) ↔ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 ∧ [𝑧 / 𝑦]𝜓)) | |
| 3 | clelsb1 2309 | . . . . . . 7 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴) | |
| 4 | 3 | anbi1i 458 | . . . . . 6 ⊢ (([𝑧 / 𝑦]𝑦 ∈ 𝐴 ∧ [𝑧 / 𝑦]𝜓) ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑦]𝜓)) |
| 5 | 2, 4 | bitri 184 | . . . . 5 ⊢ ([𝑧 / 𝑦](𝑦 ∈ 𝐴 ∧ 𝜓) ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑦]𝜓)) |
| 6 | 5 | exbii 1627 | . . . 4 ⊢ (∃𝑧[𝑧 / 𝑦](𝑦 ∈ 𝐴 ∧ 𝜓) ↔ ∃𝑧(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑦]𝜓)) |
| 7 | nfv 1550 | . . . . 5 ⊢ Ⅎ𝑧(𝑦 ∈ 𝐴 ∧ 𝜓) | |
| 8 | 7 | sb8e 1879 | . . . 4 ⊢ (∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜓) ↔ ∃𝑧[𝑧 / 𝑦](𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 9 | df-rex 2489 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 [𝑧 / 𝑦]𝜓 ↔ ∃𝑧(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑦]𝜓)) | |
| 10 | 6, 8, 9 | 3bitr4i 212 | . . 3 ⊢ (∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜓) ↔ ∃𝑧 ∈ 𝐴 [𝑧 / 𝑦]𝜓) |
| 11 | nfv 1550 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 12 | nfraldya.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 13 | nfraldya.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 14 | nfraldya.4 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 15 | 13, 14 | nfsbd 2004 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥[𝑧 / 𝑦]𝜓) |
| 16 | 11, 12, 15 | nfrexdxy 2539 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∃𝑧 ∈ 𝐴 [𝑧 / 𝑦]𝜓) |
| 17 | 10, 16 | nfxfrd 1497 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 18 | 1, 17 | nfxfrd 1497 | 1 ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 Ⅎwnf 1482 ∃wex 1514 [wsb 1784 ∈ wcel 2175 Ⅎwnfc 2334 ∃wrex 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 |
| This theorem is referenced by: nfrexya 2546 |
| Copyright terms: Public domain | W3C validator |