ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnwofdc GIF version

Theorem nnwofdc 12041
Description: Well-ordering principle: any inhabited decidable set of positive integers has a least element. This version allows 𝑥 and 𝑦 to be present in 𝐴 as long as they are effectively not free. (Contributed by NM, 17-Aug-2001.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nnwof.1 𝑥𝐴
nnwof.2 𝑦𝐴
Assertion
Ref Expression
nnwofdc ((𝐴 ⊆ ℕ ∧ ∃𝑧 𝑧𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗𝐴) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable groups:   𝐴,𝑗,𝑧   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem nnwofdc
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnwodc 12039 . 2 ((𝐴 ⊆ ℕ ∧ ∃𝑧 𝑧𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗𝐴) → ∃𝑤𝐴𝑣𝐴 𝑤𝑣)
2 nfcv 2319 . . 3 𝑤𝐴
3 nnwof.1 . . 3 𝑥𝐴
4 nfv 1528 . . . 4 𝑥 𝑤𝑣
53, 4nfralw 2514 . . 3 𝑥𝑣𝐴 𝑤𝑣
6 nfv 1528 . . 3 𝑤𝑦𝐴 𝑥𝑦
7 breq1 4008 . . . . 5 (𝑤 = 𝑥 → (𝑤𝑣𝑥𝑣))
87ralbidv 2477 . . . 4 (𝑤 = 𝑥 → (∀𝑣𝐴 𝑤𝑣 ↔ ∀𝑣𝐴 𝑥𝑣))
9 nfcv 2319 . . . . 5 𝑣𝐴
10 nnwof.2 . . . . 5 𝑦𝐴
11 nfv 1528 . . . . 5 𝑦 𝑥𝑣
12 nfv 1528 . . . . 5 𝑣 𝑥𝑦
13 breq2 4009 . . . . 5 (𝑣 = 𝑦 → (𝑥𝑣𝑥𝑦))
149, 10, 11, 12, 13cbvralfw 2695 . . . 4 (∀𝑣𝐴 𝑥𝑣 ↔ ∀𝑦𝐴 𝑥𝑦)
158, 14bitrdi 196 . . 3 (𝑤 = 𝑥 → (∀𝑣𝐴 𝑤𝑣 ↔ ∀𝑦𝐴 𝑥𝑦))
162, 3, 5, 6, 15cbvrexfw 2696 . 2 (∃𝑤𝐴𝑣𝐴 𝑤𝑣 ↔ ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
171, 16sylib 122 1 ((𝐴 ⊆ ℕ ∧ ∃𝑧 𝑧𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗𝐴) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 834  w3a 978  wex 1492  wcel 2148  wnfc 2306  wral 2455  wrex 2456  wss 3131   class class class wbr 4005  cle 7995  cn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011  df-fzo 10145
This theorem is referenced by:  nnwosdc  12042
  Copyright terms: Public domain W3C validator