| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnwofdc | GIF version | ||
| Description: Well-ordering principle: any inhabited decidable set of positive integers has a least element. This version allows 𝑥 and 𝑦 to be present in 𝐴 as long as they are effectively not free. (Contributed by NM, 17-Aug-2001.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nnwof.1 | ⊢ Ⅎ𝑥𝐴 |
| nnwof.2 | ⊢ Ⅎ𝑦𝐴 |
| Ref | Expression |
|---|---|
| nnwofdc | ⊢ ((𝐴 ⊆ ℕ ∧ ∃𝑧 𝑧 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnwodc 12442 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ ∃𝑧 𝑧 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) → ∃𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐴 𝑤 ≤ 𝑣) | |
| 2 | nfcv 2349 | . . 3 ⊢ Ⅎ𝑤𝐴 | |
| 3 | nnwof.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfv 1552 | . . . 4 ⊢ Ⅎ𝑥 𝑤 ≤ 𝑣 | |
| 5 | 3, 4 | nfralw 2544 | . . 3 ⊢ Ⅎ𝑥∀𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 |
| 6 | nfv 1552 | . . 3 ⊢ Ⅎ𝑤∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 | |
| 7 | breq1 4057 | . . . . 5 ⊢ (𝑤 = 𝑥 → (𝑤 ≤ 𝑣 ↔ 𝑥 ≤ 𝑣)) | |
| 8 | 7 | ralbidv 2507 | . . . 4 ⊢ (𝑤 = 𝑥 → (∀𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 ↔ ∀𝑣 ∈ 𝐴 𝑥 ≤ 𝑣)) |
| 9 | nfcv 2349 | . . . . 5 ⊢ Ⅎ𝑣𝐴 | |
| 10 | nnwof.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 11 | nfv 1552 | . . . . 5 ⊢ Ⅎ𝑦 𝑥 ≤ 𝑣 | |
| 12 | nfv 1552 | . . . . 5 ⊢ Ⅎ𝑣 𝑥 ≤ 𝑦 | |
| 13 | breq2 4058 | . . . . 5 ⊢ (𝑣 = 𝑦 → (𝑥 ≤ 𝑣 ↔ 𝑥 ≤ 𝑦)) | |
| 14 | 9, 10, 11, 12, 13 | cbvralfw 2729 | . . . 4 ⊢ (∀𝑣 ∈ 𝐴 𝑥 ≤ 𝑣 ↔ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
| 15 | 8, 14 | bitrdi 196 | . . 3 ⊢ (𝑤 = 𝑥 → (∀𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 ↔ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) |
| 16 | 2, 3, 5, 6, 15 | cbvrexfw 2730 | . 2 ⊢ (∃𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
| 17 | 1, 16 | sylib 122 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ ∃𝑧 𝑧 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 DECID wdc 836 ∧ w3a 981 ∃wex 1516 ∈ wcel 2177 Ⅎwnfc 2336 ∀wral 2485 ∃wrex 2486 ⊆ wss 3170 class class class wbr 4054 ≤ cle 8138 ℕcn 9066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-po 4356 df-iso 4357 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-isom 5294 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-sup 7107 df-inf 7108 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-inn 9067 df-n0 9326 df-z 9403 df-uz 9679 df-fz 10161 df-fzo 10295 |
| This theorem is referenced by: nnwosdc 12445 |
| Copyright terms: Public domain | W3C validator |