Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnwofdc | GIF version |
Description: Well-ordering principle: any inhabited decidable set of positive integers has a least element. This version allows 𝑥 and 𝑦 to be present in 𝐴 as long as they are effectively not free. (Contributed by NM, 17-Aug-2001.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nnwof.1 | ⊢ Ⅎ𝑥𝐴 |
nnwof.2 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
nnwofdc | ⊢ ((𝐴 ⊆ ℕ ∧ ∃𝑧 𝑧 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnwodc 12002 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ ∃𝑧 𝑧 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) → ∃𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐴 𝑤 ≤ 𝑣) | |
2 | nfcv 2317 | . . 3 ⊢ Ⅎ𝑤𝐴 | |
3 | nnwof.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
4 | nfv 1526 | . . . 4 ⊢ Ⅎ𝑥 𝑤 ≤ 𝑣 | |
5 | 3, 4 | nfralw 2512 | . . 3 ⊢ Ⅎ𝑥∀𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 |
6 | nfv 1526 | . . 3 ⊢ Ⅎ𝑤∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 | |
7 | breq1 4001 | . . . . 5 ⊢ (𝑤 = 𝑥 → (𝑤 ≤ 𝑣 ↔ 𝑥 ≤ 𝑣)) | |
8 | 7 | ralbidv 2475 | . . . 4 ⊢ (𝑤 = 𝑥 → (∀𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 ↔ ∀𝑣 ∈ 𝐴 𝑥 ≤ 𝑣)) |
9 | nfcv 2317 | . . . . 5 ⊢ Ⅎ𝑣𝐴 | |
10 | nnwof.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
11 | nfv 1526 | . . . . 5 ⊢ Ⅎ𝑦 𝑥 ≤ 𝑣 | |
12 | nfv 1526 | . . . . 5 ⊢ Ⅎ𝑣 𝑥 ≤ 𝑦 | |
13 | breq2 4002 | . . . . 5 ⊢ (𝑣 = 𝑦 → (𝑥 ≤ 𝑣 ↔ 𝑥 ≤ 𝑦)) | |
14 | 9, 10, 11, 12, 13 | cbvralfw 2692 | . . . 4 ⊢ (∀𝑣 ∈ 𝐴 𝑥 ≤ 𝑣 ↔ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
15 | 8, 14 | bitrdi 196 | . . 3 ⊢ (𝑤 = 𝑥 → (∀𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 ↔ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) |
16 | 2, 3, 5, 6, 15 | cbvrexfw 2693 | . 2 ⊢ (∃𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
17 | 1, 16 | sylib 122 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ ∃𝑧 𝑧 ∈ 𝐴 ∧ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 DECID wdc 834 ∧ w3a 978 ∃wex 1490 ∈ wcel 2146 Ⅎwnfc 2304 ∀wral 2453 ∃wrex 2454 ⊆ wss 3127 class class class wbr 3998 ≤ cle 7967 ℕcn 8890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-po 4290 df-iso 4291 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-isom 5217 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-sup 6973 df-inf 6974 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8891 df-n0 9148 df-z 9225 df-uz 9500 df-fz 9978 df-fzo 10111 |
This theorem is referenced by: nnwosdc 12005 |
Copyright terms: Public domain | W3C validator |