ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemladdrl GIF version

Theorem caucvgprlemladdrl 7454
Description: Lemma for caucvgpr 7458. Adding 𝑆 after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 8-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
caucvgprlemladd.s (𝜑𝑆Q)
Assertion
Ref Expression
caucvgprlemladdrl (𝜑 → {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆)} ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑢,𝑙   𝑛,𝐹,𝑘   𝑘,𝐿,𝑗   𝑆,𝑙,𝑢,𝑗   𝑗,𝑘,𝑆
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝑆(𝑛)   𝐿(𝑢,𝑛,𝑙)

Proof of Theorem caucvgprlemladdrl
Dummy variables 𝑟 𝑓 𝑔 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3675 . . . . . . . . 9 (𝑗 = 𝑎 → ⟨𝑗, 1o⟩ = ⟨𝑎, 1o⟩)
21eceq1d 6433 . . . . . . . 8 (𝑗 = 𝑎 → [⟨𝑗, 1o⟩] ~Q = [⟨𝑎, 1o⟩] ~Q )
32fveq2d 5393 . . . . . . 7 (𝑗 = 𝑎 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨𝑎, 1o⟩] ~Q ))
43oveq2d 5758 . . . . . 6 (𝑗 = 𝑎 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )))
5 fveq2 5389 . . . . . . 7 (𝑗 = 𝑎 → (𝐹𝑗) = (𝐹𝑎))
65oveq1d 5757 . . . . . 6 (𝑗 = 𝑎 → ((𝐹𝑗) +Q 𝑆) = ((𝐹𝑎) +Q 𝑆))
74, 6breq12d 3912 . . . . 5 (𝑗 = 𝑎 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆) ↔ (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)))
87cbvrexv 2632 . . . 4 (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆) ↔ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆))
98a1i 9 . . 3 (𝑙Q → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆) ↔ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)))
109rabbiia 2645 . 2 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆)} = {𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)}
11 oveq1 5749 . . . . . . 7 (𝑙 = 𝑟 → (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) = (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )))
1211breq1d 3909 . . . . . 6 (𝑙 = 𝑟 → ((𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆) ↔ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)))
1312rexbidv 2415 . . . . 5 (𝑙 = 𝑟 → (∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆) ↔ ∃𝑎N (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)))
1413elrab 2813 . . . 4 (𝑟 ∈ {𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)} ↔ (𝑟Q ∧ ∃𝑎N (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)))
15 caucvgpr.f . . . . . . . . . . . . . . 15 (𝜑𝐹:NQ)
1615ad4antr 485 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → 𝐹:NQ)
17 caucvgpr.cau . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
1817ad4antr 485 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
19 simpr 109 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → 𝑏N)
20 simpllr 508 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → 𝑎N)
2116, 18, 19, 20caucvgprlemnbj 7443 . . . . . . . . . . . . 13 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ¬ (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎))
2215ad3antrrr 483 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → 𝐹:NQ)
2322ffvelrnda 5523 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (𝐹𝑏) ∈ Q)
24 nnnq 7198 . . . . . . . . . . . . . . . . . 18 (𝑏N → [⟨𝑏, 1o⟩] ~QQ)
25 recclnq 7168 . . . . . . . . . . . . . . . . . 18 ([⟨𝑏, 1o⟩] ~QQ → (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q)
2619, 24, 253syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q)
27 addclnq 7151 . . . . . . . . . . . . . . . . 17 (((𝐹𝑏) ∈ Q ∧ (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q) → ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ Q)
2823, 26, 27syl2anc 408 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ Q)
29 nnnq 7198 . . . . . . . . . . . . . . . . 17 (𝑎N → [⟨𝑎, 1o⟩] ~QQ)
30 recclnq 7168 . . . . . . . . . . . . . . . . 17 ([⟨𝑎, 1o⟩] ~QQ → (*Q‘[⟨𝑎, 1o⟩] ~Q ) ∈ Q)
3120, 29, 303syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (*Q‘[⟨𝑎, 1o⟩] ~Q ) ∈ Q)
32 caucvgprlemladd.s . . . . . . . . . . . . . . . . 17 (𝜑𝑆Q)
3332ad4antr 485 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → 𝑆Q)
34 addassnqg 7158 . . . . . . . . . . . . . . . 16 ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ Q ∧ (*Q‘[⟨𝑎, 1o⟩] ~Q ) ∈ Q𝑆Q) → ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) +Q 𝑆) = (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q ((*Q‘[⟨𝑎, 1o⟩] ~Q ) +Q 𝑆)))
3528, 31, 33, 34syl3anc 1201 . . . . . . . . . . . . . . 15 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) +Q 𝑆) = (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q ((*Q‘[⟨𝑎, 1o⟩] ~Q ) +Q 𝑆)))
3635breq1d 3909 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) +Q 𝑆) <Q ((𝐹𝑎) +Q 𝑆) ↔ (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q ((*Q‘[⟨𝑎, 1o⟩] ~Q ) +Q 𝑆)) <Q ((𝐹𝑎) +Q 𝑆)))
37 ltanqg 7176 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
3837adantl 275 . . . . . . . . . . . . . . 15 ((((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
39 addclnq 7151 . . . . . . . . . . . . . . . 16 ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ Q ∧ (*Q‘[⟨𝑎, 1o⟩] ~Q ) ∈ Q) → (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ∈ Q)
4028, 31, 39syl2anc 408 . . . . . . . . . . . . . . 15 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ∈ Q)
4116, 20ffvelrnd 5524 . . . . . . . . . . . . . . 15 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (𝐹𝑎) ∈ Q)
42 addcomnqg 7157 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4342adantl 275 . . . . . . . . . . . . . . 15 ((((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4438, 40, 41, 33, 43caovord2d 5908 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎) ↔ ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) +Q 𝑆) <Q ((𝐹𝑎) +Q 𝑆)))
45 addcomnqg 7157 . . . . . . . . . . . . . . . . 17 ((𝑆Q ∧ (*Q‘[⟨𝑎, 1o⟩] ~Q ) ∈ Q) → (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) = ((*Q‘[⟨𝑎, 1o⟩] ~Q ) +Q 𝑆))
4633, 31, 45syl2anc 408 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) = ((*Q‘[⟨𝑎, 1o⟩] ~Q ) +Q 𝑆))
4746oveq2d 5758 . . . . . . . . . . . . . . 15 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) = (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q ((*Q‘[⟨𝑎, 1o⟩] ~Q ) +Q 𝑆)))
4847breq1d 3909 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆) ↔ (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q ((*Q‘[⟨𝑎, 1o⟩] ~Q ) +Q 𝑆)) <Q ((𝐹𝑎) +Q 𝑆)))
4936, 44, 483bitr4rd 220 . . . . . . . . . . . . 13 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆) ↔ (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎)))
5021, 49mtbird 647 . . . . . . . . . . . 12 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ¬ (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆))
5150nrexdv 2502 . . . . . . . . . . 11 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ¬ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆))
5251intnand 901 . . . . . . . . . 10 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ¬ (((𝐹𝑎) +Q 𝑆) ∈ Q ∧ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆)))
5317ad3antrrr 483 . . . . . . . . . . . . 13 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
54 caucvgpr.bnd . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
55 fveq2 5389 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑏 → (𝐹𝑗) = (𝐹𝑏))
5655breq2d 3911 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑏 → (𝐴 <Q (𝐹𝑗) ↔ 𝐴 <Q (𝐹𝑏)))
5756cbvralv 2631 . . . . . . . . . . . . . . 15 (∀𝑗N 𝐴 <Q (𝐹𝑗) ↔ ∀𝑏N 𝐴 <Q (𝐹𝑏))
5854, 57sylib 121 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑏N 𝐴 <Q (𝐹𝑏))
5958ad3antrrr 483 . . . . . . . . . . . . 13 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ∀𝑏N 𝐴 <Q (𝐹𝑏))
60 caucvgpr.lim . . . . . . . . . . . . . 14 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
61 opeq1 3675 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑏 → ⟨𝑗, 1o⟩ = ⟨𝑏, 1o⟩)
6261eceq1d 6433 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑏 → [⟨𝑗, 1o⟩] ~Q = [⟨𝑏, 1o⟩] ~Q )
6362fveq2d 5393 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑏 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨𝑏, 1o⟩] ~Q ))
6463oveq2d 5758 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑏 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑙 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
6564, 55breq12d 3912 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑏 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑙 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q (𝐹𝑏)))
6665cbvrexv 2632 . . . . . . . . . . . . . . . . 17 (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑏N (𝑙 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q (𝐹𝑏))
6766a1i 9 . . . . . . . . . . . . . . . 16 (𝑙Q → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑏N (𝑙 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q (𝐹𝑏)))
6867rabbiia 2645 . . . . . . . . . . . . . . 15 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} = {𝑙Q ∣ ∃𝑏N (𝑙 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q (𝐹𝑏)}
6955, 63oveq12d 5760 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑏 → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
7069breq1d 3909 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑏 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑢))
7170cbvrexv 2632 . . . . . . . . . . . . . . . . 17 (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑏N ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑢)
7271a1i 9 . . . . . . . . . . . . . . . 16 (𝑢Q → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑏N ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑢))
7372rabbiia 2645 . . . . . . . . . . . . . . 15 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} = {𝑢Q ∣ ∃𝑏N ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑢}
7468, 73opeq12i 3680 . . . . . . . . . . . . . 14 ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩ = ⟨{𝑙Q ∣ ∃𝑏N (𝑙 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q (𝐹𝑏)}, {𝑢Q ∣ ∃𝑏N ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑢}⟩
7560, 74eqtri 2138 . . . . . . . . . . . . 13 𝐿 = ⟨{𝑙Q ∣ ∃𝑏N (𝑙 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q (𝐹𝑏)}, {𝑢Q ∣ ∃𝑏N ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑢}⟩
7632ad3antrrr 483 . . . . . . . . . . . . . 14 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → 𝑆Q)
7729, 30syl 14 . . . . . . . . . . . . . . 15 (𝑎N → (*Q‘[⟨𝑎, 1o⟩] ~Q ) ∈ Q)
7877ad2antlr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (*Q‘[⟨𝑎, 1o⟩] ~Q ) ∈ Q)
79 addclnq 7151 . . . . . . . . . . . . . 14 ((𝑆Q ∧ (*Q‘[⟨𝑎, 1o⟩] ~Q ) ∈ Q) → (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ∈ Q)
8076, 78, 79syl2anc 408 . . . . . . . . . . . . 13 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ∈ Q)
8122, 53, 59, 75, 80caucvgprlemladdfu 7453 . . . . . . . . . . . 12 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)) ⊆ {𝑢Q ∣ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q 𝑢})
8281sseld 3066 . . . . . . . . . . 11 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (((𝐹𝑎) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)) → ((𝐹𝑎) +Q 𝑆) ∈ {𝑢Q ∣ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q 𝑢}))
83 breq2 3903 . . . . . . . . . . . . 13 (𝑢 = ((𝐹𝑎) +Q 𝑆) → ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q 𝑢 ↔ (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆)))
8483rexbidv 2415 . . . . . . . . . . . 12 (𝑢 = ((𝐹𝑎) +Q 𝑆) → (∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q 𝑢 ↔ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆)))
8584elrab 2813 . . . . . . . . . . 11 (((𝐹𝑎) +Q 𝑆) ∈ {𝑢Q ∣ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q 𝑢} ↔ (((𝐹𝑎) +Q 𝑆) ∈ Q ∧ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆)))
8682, 85syl6ib 160 . . . . . . . . . 10 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (((𝐹𝑎) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)) → (((𝐹𝑎) +Q 𝑆) ∈ Q ∧ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆))))
8752, 86mtod 637 . . . . . . . . 9 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ¬ ((𝐹𝑎) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)))
8815, 17, 54, 60caucvgprlemcl 7452 . . . . . . . . . . . 12 (𝜑𝐿P)
8988ad3antrrr 483 . . . . . . . . . . 11 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → 𝐿P)
90 nqprlu 7323 . . . . . . . . . . . 12 ((𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ∈ Q → ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩ ∈ P)
9180, 90syl 14 . . . . . . . . . . 11 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩ ∈ P)
92 addclpr 7313 . . . . . . . . . . 11 ((𝐿P ∧ ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩ ∈ P) → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩) ∈ P)
9389, 91, 92syl2anc 408 . . . . . . . . . 10 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩) ∈ P)
94 prop 7251 . . . . . . . . . . 11 ((𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩) ∈ P → ⟨(1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)), (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩))⟩ ∈ P)
95 prloc 7267 . . . . . . . . . . 11 ((⟨(1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)), (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩))⟩ ∈ P ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ((𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)) ∨ ((𝐹𝑎) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩))))
9694, 95sylan 281 . . . . . . . . . 10 (((𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩) ∈ P ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ((𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)) ∨ ((𝐹𝑎) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩))))
9793, 96sylancom 416 . . . . . . . . 9 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ((𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)) ∨ ((𝐹𝑎) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩))))
9887, 97ecased 1312 . . . . . . . 8 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)))
99 simpllr 508 . . . . . . . . 9 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → 𝑟Q)
10089, 76, 99, 78caucvgprlemcanl 7420 . . . . . . . 8 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ((𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)) ↔ 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
10198, 100mpbid 146 . . . . . . 7 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
102101ex 114 . . . . . 6 (((𝜑𝑟Q) ∧ 𝑎N) → ((𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆) → 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
103102rexlimdva 2526 . . . . 5 ((𝜑𝑟Q) → (∃𝑎N (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆) → 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
104103expimpd 360 . . . 4 (𝜑 → ((𝑟Q ∧ ∃𝑎N (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
10514, 104syl5bi 151 . . 3 (𝜑 → (𝑟 ∈ {𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)} → 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
106105ssrdv 3073 . 2 (𝜑 → {𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)} ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
10710, 106eqsstrid 3113 1 (𝜑 → {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆)} ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 682  w3a 947   = wceq 1316  wcel 1465  {cab 2103  wral 2393  wrex 2394  {crab 2397  wss 3041  cop 3500   class class class wbr 3899  wf 5089  cfv 5093  (class class class)co 5742  1st c1st 6004  2nd c2nd 6005  1oc1o 6274  [cec 6395  Ncnpi 7048   <N clti 7051   ~Q ceq 7055  Qcnq 7056   +Q cplq 7058  *Qcrq 7060   <Q cltq 7061  Pcnp 7067   +P cpp 7069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-eprel 4181  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-1o 6281  df-2o 6282  df-oadd 6285  df-omul 6286  df-er 6397  df-ec 6399  df-qs 6403  df-ni 7080  df-pli 7081  df-mi 7082  df-lti 7083  df-plpq 7120  df-mpq 7121  df-enq 7123  df-nqqs 7124  df-plqqs 7125  df-mqqs 7126  df-1nqqs 7127  df-rq 7128  df-ltnqqs 7129  df-enq0 7200  df-nq0 7201  df-0nq0 7202  df-plq0 7203  df-mq0 7204  df-inp 7242  df-iplp 7244  df-iltp 7246
This theorem is referenced by:  caucvgprlem1  7455
  Copyright terms: Public domain W3C validator