| Step | Hyp | Ref
 | Expression | 
| 1 |   | opeq1 3808 | 
. . . . . . . . 9
⊢ (𝑗 = 𝑎 → 〈𝑗, 1o〉 = 〈𝑎,
1o〉) | 
| 2 | 1 | eceq1d 6628 | 
. . . . . . . 8
⊢ (𝑗 = 𝑎 → [〈𝑗, 1o〉]
~Q = [〈𝑎, 1o〉]
~Q ) | 
| 3 | 2 | fveq2d 5562 | 
. . . . . . 7
⊢ (𝑗 = 𝑎 →
(*Q‘[〈𝑗, 1o〉]
~Q ) = (*Q‘[〈𝑎, 1o〉]
~Q )) | 
| 4 | 3 | oveq2d 5938 | 
. . . . . 6
⊢ (𝑗 = 𝑎 → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) | 
| 5 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑗 = 𝑎 → (𝐹‘𝑗) = (𝐹‘𝑎)) | 
| 6 | 5 | oveq1d 5937 | 
. . . . . 6
⊢ (𝑗 = 𝑎 → ((𝐹‘𝑗) +Q 𝑆) = ((𝐹‘𝑎) +Q 𝑆)) | 
| 7 | 4, 6 | breq12d 4046 | 
. . . . 5
⊢ (𝑗 = 𝑎 → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑆) ↔ (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆))) | 
| 8 | 7 | cbvrexv 2730 | 
. . . 4
⊢
(∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑆) ↔ ∃𝑎 ∈ N (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) | 
| 9 | 8 | a1i 9 | 
. . 3
⊢ (𝑙 ∈ Q →
(∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑆) ↔ ∃𝑎 ∈ N (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆))) | 
| 10 | 9 | rabbiia 2748 | 
. 2
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑆)} = {𝑙 ∈ Q ∣ ∃𝑎 ∈ N (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)} | 
| 11 |   | oveq1 5929 | 
. . . . . . 7
⊢ (𝑙 = 𝑟 → (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) = (𝑟 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) | 
| 12 | 11 | breq1d 4043 | 
. . . . . 6
⊢ (𝑙 = 𝑟 → ((𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆) ↔ (𝑟 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆))) | 
| 13 | 12 | rexbidv 2498 | 
. . . . 5
⊢ (𝑙 = 𝑟 → (∃𝑎 ∈ N (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆) ↔ ∃𝑎 ∈ N (𝑟 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆))) | 
| 14 | 13 | elrab 2920 | 
. . . 4
⊢ (𝑟 ∈ {𝑙 ∈ Q ∣ ∃𝑎 ∈ N (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)} ↔ (𝑟 ∈ Q ∧ ∃𝑎 ∈ N (𝑟 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆))) | 
| 15 |   | caucvgpr.f | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:N⟶Q) | 
| 16 | 15 | ad4antr 494 | 
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) → 𝐹:N⟶Q) | 
| 17 |   | caucvgpr.cau | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))))) | 
| 18 | 17 | ad4antr 494 | 
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) → ∀𝑛 ∈ N
∀𝑘 ∈
N (𝑛
<N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))))) | 
| 19 |   | simpr 110 | 
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) → 𝑏 ∈
N) | 
| 20 |   | simpllr 534 | 
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) → 𝑎 ∈
N) | 
| 21 | 16, 18, 19, 20 | caucvgprlemnbj 7734 | 
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) → ¬
(((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q (𝐹‘𝑎)) | 
| 22 | 15 | ad3antrrr 492 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) ∧
(𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → 𝐹:N⟶Q) | 
| 23 | 22 | ffvelcdmda 5697 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) → (𝐹‘𝑏) ∈ Q) | 
| 24 |   | nnnq 7489 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ∈ N →
[〈𝑏,
1o〉] ~Q ∈
Q) | 
| 25 |   | recclnq 7459 | 
. . . . . . . . . . . . . . . . . 18
⊢
([〈𝑏,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) | 
| 26 | 19, 24, 25 | 3syl 17 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) →
(*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) | 
| 27 |   | addclnq 7442 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝑏) ∈ Q ∧
(*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) → ((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ Q) | 
| 28 | 23, 26, 27 | syl2anc 411 | 
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) → ((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ Q) | 
| 29 |   | nnnq 7489 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ N →
[〈𝑎,
1o〉] ~Q ∈
Q) | 
| 30 |   | recclnq 7459 | 
. . . . . . . . . . . . . . . . 17
⊢
([〈𝑎,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝑎, 1o〉]
~Q ) ∈ Q) | 
| 31 | 20, 29, 30 | 3syl 17 | 
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) →
(*Q‘[〈𝑎, 1o〉]
~Q ) ∈ Q) | 
| 32 |   | caucvgprlemladd.s | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑆 ∈ Q) | 
| 33 | 32 | ad4antr 494 | 
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) → 𝑆 ∈
Q) | 
| 34 |   | addassnqg 7449 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ Q ∧
(*Q‘[〈𝑎, 1o〉]
~Q ) ∈ Q ∧ 𝑆 ∈ Q) → ((((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) +Q 𝑆) = (((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q
((*Q‘[〈𝑎, 1o〉]
~Q ) +Q 𝑆))) | 
| 35 | 28, 31, 33, 34 | syl3anc 1249 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) → ((((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) +Q 𝑆) = (((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q
((*Q‘[〈𝑎, 1o〉]
~Q ) +Q 𝑆))) | 
| 36 | 35 | breq1d 4043 | 
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) → (((((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) +Q 𝑆) <Q ((𝐹‘𝑎) +Q 𝑆) ↔ (((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q
((*Q‘[〈𝑎, 1o〉]
~Q ) +Q 𝑆)) <Q ((𝐹‘𝑎) +Q 𝑆))) | 
| 37 |   | ltanqg 7467 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) | 
| 38 | 37 | adantl 277 | 
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) ∧ (𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q)) → (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) | 
| 39 |   | addclnq 7442 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ Q ∧
(*Q‘[〈𝑎, 1o〉]
~Q ) ∈ Q) → (((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∈ Q) | 
| 40 | 28, 31, 39 | syl2anc 411 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) → (((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∈ Q) | 
| 41 | 16, 20 | ffvelcdmd 5698 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) → (𝐹‘𝑎) ∈ Q) | 
| 42 |   | addcomnqg 7448 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) | 
| 43 | 42 | adantl 277 | 
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) ∧ (𝑓 ∈ Q ∧
𝑔 ∈ Q))
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) | 
| 44 | 38, 40, 41, 33, 43 | caovord2d 6093 | 
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) → ((((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q (𝐹‘𝑎) ↔ ((((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) +Q 𝑆) <Q ((𝐹‘𝑎) +Q 𝑆))) | 
| 45 |   | addcomnqg 7448 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ∈ Q ∧
(*Q‘[〈𝑎, 1o〉]
~Q ) ∈ Q) → (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) =
((*Q‘[〈𝑎, 1o〉]
~Q ) +Q 𝑆)) | 
| 46 | 33, 31, 45 | syl2anc 411 | 
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) → (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) =
((*Q‘[〈𝑎, 1o〉]
~Q ) +Q 𝑆)) | 
| 47 | 46 | oveq2d 5938 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) → (((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) = (((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q
((*Q‘[〈𝑎, 1o〉]
~Q ) +Q 𝑆))) | 
| 48 | 47 | breq1d 4043 | 
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) → ((((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) <Q ((𝐹‘𝑎) +Q 𝑆) ↔ (((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q
((*Q‘[〈𝑎, 1o〉]
~Q ) +Q 𝑆)) <Q ((𝐹‘𝑎) +Q 𝑆))) | 
| 49 | 36, 44, 48 | 3bitr4rd 221 | 
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) → ((((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) <Q ((𝐹‘𝑎) +Q 𝑆) ↔ (((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q (𝐹‘𝑎))) | 
| 50 | 21, 49 | mtbird 674 | 
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑟 ∈ Q) ∧
𝑎 ∈ N)
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) ∧ 𝑏 ∈ N) → ¬
(((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) <Q ((𝐹‘𝑎) +Q 𝑆)) | 
| 51 | 50 | nrexdv 2590 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) ∧
(𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → ¬ ∃𝑏 ∈ N (((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) <Q ((𝐹‘𝑎) +Q 𝑆)) | 
| 52 | 51 | intnand 932 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) ∧
(𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → ¬ (((𝐹‘𝑎) +Q 𝑆) ∈ Q ∧
∃𝑏 ∈
N (((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) <Q ((𝐹‘𝑎) +Q 𝑆))) | 
| 53 | 17 | ad3antrrr 492 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) ∧
(𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → ∀𝑛 ∈ N
∀𝑘 ∈
N (𝑛
<N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))))) | 
| 54 |   | caucvgpr.bnd | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) | 
| 55 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑏 → (𝐹‘𝑗) = (𝐹‘𝑏)) | 
| 56 | 55 | breq2d 4045 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑏 → (𝐴 <Q (𝐹‘𝑗) ↔ 𝐴 <Q (𝐹‘𝑏))) | 
| 57 | 56 | cbvralv 2729 | 
. . . . . . . . . . . . . . 15
⊢
(∀𝑗 ∈
N 𝐴
<Q (𝐹‘𝑗) ↔ ∀𝑏 ∈ N 𝐴 <Q (𝐹‘𝑏)) | 
| 58 | 54, 57 | sylib 122 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑏 ∈ N 𝐴 <Q (𝐹‘𝑏)) | 
| 59 | 58 | ad3antrrr 492 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) ∧
(𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → ∀𝑏 ∈ N 𝐴 <Q
(𝐹‘𝑏)) | 
| 60 |   | caucvgpr.lim | 
. . . . . . . . . . . . . 14
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 | 
| 61 |   | opeq1 3808 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑏 → 〈𝑗, 1o〉 = 〈𝑏,
1o〉) | 
| 62 | 61 | eceq1d 6628 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑏 → [〈𝑗, 1o〉]
~Q = [〈𝑏, 1o〉]
~Q ) | 
| 63 | 62 | fveq2d 5562 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑏 →
(*Q‘[〈𝑗, 1o〉]
~Q ) = (*Q‘[〈𝑏, 1o〉]
~Q )) | 
| 64 | 63 | oveq2d 5938 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑏 → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑙 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))) | 
| 65 | 64, 55 | breq12d 4046 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑏 → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑙 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q (𝐹‘𝑏))) | 
| 66 | 65 | cbvrexv 2730 | 
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑏 ∈ N (𝑙 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q (𝐹‘𝑏)) | 
| 67 | 66 | a1i 9 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑙 ∈ Q →
(∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑏 ∈ N (𝑙 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q (𝐹‘𝑏))) | 
| 68 | 67 | rabbiia 2748 | 
. . . . . . . . . . . . . . 15
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} = {𝑙 ∈ Q ∣ ∃𝑏 ∈ N (𝑙 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q (𝐹‘𝑏)} | 
| 69 | 55, 63 | oveq12d 5940 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑏 → ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = ((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))) | 
| 70 | 69 | breq1d 4043 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑏 → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑢)) | 
| 71 | 70 | cbvrexv 2730 | 
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ∃𝑏 ∈ N ((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑢) | 
| 72 | 71 | a1i 9 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ Q →
(∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ∃𝑏 ∈ N ((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑢)) | 
| 73 | 72 | rabbiia 2748 | 
. . . . . . . . . . . . . . 15
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} = {𝑢 ∈ Q ∣ ∃𝑏 ∈ N ((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑢} | 
| 74 | 68, 73 | opeq12i 3813 | 
. . . . . . . . . . . . . 14
⊢
〈{𝑙 ∈
Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 = 〈{𝑙 ∈ Q ∣
∃𝑏 ∈
N (𝑙
+Q (*Q‘[〈𝑏, 1o〉]
~Q )) <Q (𝐹‘𝑏)}, {𝑢 ∈ Q ∣ ∃𝑏 ∈ N ((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑢}〉 | 
| 75 | 60, 74 | eqtri 2217 | 
. . . . . . . . . . . . 13
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑏 ∈ N (𝑙 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q (𝐹‘𝑏)}, {𝑢 ∈ Q ∣ ∃𝑏 ∈ N ((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑢}〉 | 
| 76 | 32 | ad3antrrr 492 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) ∧
(𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → 𝑆 ∈ Q) | 
| 77 | 29, 30 | syl 14 | 
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ N →
(*Q‘[〈𝑎, 1o〉]
~Q ) ∈ Q) | 
| 78 | 77 | ad2antlr 489 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) ∧
(𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) →
(*Q‘[〈𝑎, 1o〉]
~Q ) ∈ Q) | 
| 79 |   | addclnq 7442 | 
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ Q ∧
(*Q‘[〈𝑎, 1o〉]
~Q ) ∈ Q) → (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∈ Q) | 
| 80 | 76, 78, 79 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) ∧
(𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∈ Q) | 
| 81 | 22, 53, 59, 75, 80 | caucvgprlemladdfu 7744 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) ∧
(𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉)) ⊆ {𝑢 ∈ Q ∣
∃𝑏 ∈
N (((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) <Q 𝑢}) | 
| 82 | 81 | sseld 3182 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) ∧
(𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → (((𝐹‘𝑎) +Q 𝑆) ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉)) → ((𝐹‘𝑎) +Q 𝑆) ∈ {𝑢 ∈ Q ∣ ∃𝑏 ∈ N (((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) <Q 𝑢})) | 
| 83 |   | breq2 4037 | 
. . . . . . . . . . . . 13
⊢ (𝑢 = ((𝐹‘𝑎) +Q 𝑆) → ((((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) <Q 𝑢 ↔ (((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) <Q ((𝐹‘𝑎) +Q 𝑆))) | 
| 84 | 83 | rexbidv 2498 | 
. . . . . . . . . . . 12
⊢ (𝑢 = ((𝐹‘𝑎) +Q 𝑆) → (∃𝑏 ∈ N (((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) <Q 𝑢 ↔ ∃𝑏 ∈ N (((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) <Q ((𝐹‘𝑎) +Q 𝑆))) | 
| 85 | 84 | elrab 2920 | 
. . . . . . . . . . 11
⊢ (((𝐹‘𝑎) +Q 𝑆) ∈ {𝑢 ∈ Q ∣ ∃𝑏 ∈ N (((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) <Q 𝑢} ↔ (((𝐹‘𝑎) +Q 𝑆) ∈ Q ∧
∃𝑏 ∈
N (((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) <Q ((𝐹‘𝑎) +Q 𝑆))) | 
| 86 | 82, 85 | imbitrdi 161 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) ∧
(𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → (((𝐹‘𝑎) +Q 𝑆) ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉)) → (((𝐹‘𝑎) +Q 𝑆) ∈ Q ∧
∃𝑏 ∈
N (((𝐹‘𝑏) +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) +Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) <Q ((𝐹‘𝑎) +Q 𝑆)))) | 
| 87 | 52, 86 | mtod 664 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) ∧
(𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → ¬ ((𝐹‘𝑎) +Q 𝑆) ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉))) | 
| 88 | 15, 17, 54, 60 | caucvgprlemcl 7743 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐿 ∈ P) | 
| 89 | 88 | ad3antrrr 492 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) ∧
(𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → 𝐿 ∈ P) | 
| 90 |   | nqprlu 7614 | 
. . . . . . . . . . . 12
⊢ ((𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∈ Q → 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉 ∈
P) | 
| 91 | 80, 90 | syl 14 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) ∧
(𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉 ∈
P) | 
| 92 |   | addclpr 7604 | 
. . . . . . . . . . 11
⊢ ((𝐿 ∈ P ∧
〈{𝑙 ∣ 𝑙 <Q
(𝑆
+Q (*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉 ∈ P)
→ (𝐿
+P 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉) ∈
P) | 
| 93 | 89, 91, 92 | syl2anc 411 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) ∧
(𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → (𝐿 +P 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉) ∈
P) | 
| 94 |   | prop 7542 | 
. . . . . . . . . . 11
⊢ ((𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑆
+Q (*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉) ∈ P
→ 〈(1st ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉)), (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉))〉 ∈
P) | 
| 95 |   | prloc 7558 | 
. . . . . . . . . . 11
⊢
((〈(1st ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉)), (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉))〉 ∈
P ∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → ((𝑟 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∈ (1st ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉)) ∨ ((𝐹‘𝑎) +Q 𝑆) ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉)))) | 
| 96 | 94, 95 | sylan 283 | 
. . . . . . . . . 10
⊢ (((𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑆
+Q (*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉) ∈ P
∧ (𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → ((𝑟 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∈ (1st ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉)) ∨ ((𝐹‘𝑎) +Q 𝑆) ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉)))) | 
| 97 | 93, 96 | sylancom 420 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) ∧
(𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → ((𝑟 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∈ (1st ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉)) ∨ ((𝐹‘𝑎) +Q 𝑆) ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉)))) | 
| 98 | 87, 97 | ecased 1360 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) ∧
(𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → (𝑟 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∈ (1st ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉))) | 
| 99 |   | simpllr 534 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) ∧
(𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → 𝑟 ∈ Q) | 
| 100 | 89, 76, 99, 78 | caucvgprlemcanl 7711 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) ∧
(𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → ((𝑟 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ∈ (1st ‘(𝐿 +P 〈{𝑙 ∣ 𝑙 <Q (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑢 ∣ (𝑆 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑢}〉)) ↔ 𝑟 ∈ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)))) | 
| 101 | 98, 100 | mpbid 147 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) ∧
(𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) | 
| 102 | 101 | ex 115 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑟 ∈ Q) ∧ 𝑎 ∈ N) →
((𝑟
+Q (*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆) → 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)))) | 
| 103 | 102 | rexlimdva 2614 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ Q) → (∃𝑎 ∈ N (𝑟 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆) → 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)))) | 
| 104 | 103 | expimpd 363 | 
. . . 4
⊢ (𝜑 → ((𝑟 ∈ Q ∧ ∃𝑎 ∈ N (𝑟 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)) → 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)))) | 
| 105 | 14, 104 | biimtrid 152 | 
. . 3
⊢ (𝜑 → (𝑟 ∈ {𝑙 ∈ Q ∣ ∃𝑎 ∈ N (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)} → 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)))) | 
| 106 | 105 | ssrdv 3189 | 
. 2
⊢ (𝜑 → {𝑙 ∈ Q ∣ ∃𝑎 ∈ N (𝑙 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q ((𝐹‘𝑎) +Q 𝑆)} ⊆ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) | 
| 107 | 10, 106 | eqsstrid 3229 | 
1
⊢ (𝜑 → {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑆)} ⊆ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) |