ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemaddq GIF version

Theorem caucvgprprlemaddq 7540
Description: Lemma for caucvgprpr 7544. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 5-Jun-2021.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
caucvgprprlemaddq.x (𝜑𝑋P)
caucvgprprlemaddq.q (𝜑𝑄P)
caucvgprprlemaddq.ex (𝜑 → ∃𝑟N (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))
Assertion
Ref Expression
caucvgprprlemaddq (𝜑𝑋<P (𝐿 +P 𝑄))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐴,𝑟,𝑚   𝐹,𝑙,𝑟,𝑢,𝑘,𝑛   𝑘,𝐿   𝑄,𝑟   𝑋,𝑟   𝑝,𝑙,𝑞,𝑟,𝑢   𝜑,𝑟   𝑘,𝑝,𝑞
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝑄(𝑢,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐹(𝑞,𝑝)   𝐿(𝑢,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑋(𝑢,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemaddq
Dummy variables 𝑏 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprprlemaddq.ex . 2 (𝜑 → ∃𝑟N (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))
2 nfv 1509 . . 3 𝑟𝜑
3 nfcv 2282 . . . 4 𝑟𝑋
4 nfcv 2282 . . . 4 𝑟<P
5 caucvgprpr.lim . . . . . 6 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
6 nfre1 2479 . . . . . . . 8 𝑟𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)
7 nfcv 2282 . . . . . . . 8 𝑟Q
86, 7nfrabxy 2614 . . . . . . 7 𝑟{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}
9 nfre1 2479 . . . . . . . 8 𝑟𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩
109, 7nfrabxy 2614 . . . . . . 7 𝑟{𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
118, 10nfop 3729 . . . . . 6 𝑟⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
125, 11nfcxfr 2279 . . . . 5 𝑟𝐿
13 nfcv 2282 . . . . 5 𝑟 +P
14 nfcv 2282 . . . . 5 𝑟𝑄
1512, 13, 14nfov 5809 . . . 4 𝑟(𝐿 +P 𝑄)
163, 4, 15nfbr 3982 . . 3 𝑟 𝑋<P (𝐿 +P 𝑄)
17 caucvgprpr.f . . . . . . . . . . . 12 (𝜑𝐹:NP)
1817ad2antrr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) → 𝐹:NP)
19 caucvgprpr.cau . . . . . . . . . . . 12 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
2019ad2antrr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
21 simpr 109 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) → 𝑏N)
22 simplrl 525 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) → 𝑟N)
2318, 20, 21, 22caucvgprprlemnbj 7525 . . . . . . . . . 10 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) → ¬ (((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩)<P (𝐹𝑟))
2418, 21ffvelrnd 5564 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) → (𝐹𝑏) ∈ P)
25 recnnpr 7380 . . . . . . . . . . . . . . 15 (𝑏N → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
2625adantl 275 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
27 addclpr 7369 . . . . . . . . . . . . . 14 (((𝐹𝑏) ∈ P ∧ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P) → ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) ∈ P)
2824, 26, 27syl2anc 409 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) → ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) ∈ P)
29 recnnpr 7380 . . . . . . . . . . . . . 14 (𝑟N → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
3022, 29syl 14 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
31 caucvgprprlemaddq.q . . . . . . . . . . . . . 14 (𝜑𝑄P)
3231ad2antrr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) → 𝑄P)
33 addassprg 7411 . . . . . . . . . . . . 13 ((((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) ∈ P ∧ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P𝑄P) → ((((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩) +P 𝑄) = (((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 𝑄)))
3428, 30, 32, 33syl3anc 1217 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) → ((((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩) +P 𝑄) = (((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 𝑄)))
3534breq1d 3947 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) → (((((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩) +P 𝑄)<P ((𝐹𝑟) +P 𝑄) ↔ (((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 𝑄))<P ((𝐹𝑟) +P 𝑄)))
36 ltaprg 7451 . . . . . . . . . . . . 13 ((𝑓P𝑔PP) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
3736adantl 275 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) ∧ (𝑓P𝑔PP)) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
38 addclpr 7369 . . . . . . . . . . . . 13 ((((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) ∈ P ∧ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P) → (((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩) ∈ P)
3928, 30, 38syl2anc 409 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) → (((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩) ∈ P)
4018, 22ffvelrnd 5564 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) → (𝐹𝑟) ∈ P)
41 addcomprg 7410 . . . . . . . . . . . . 13 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
4241adantl 275 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
4337, 39, 40, 32, 42caovord2d 5948 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) → ((((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩)<P (𝐹𝑟) ↔ ((((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩) +P 𝑄)<P ((𝐹𝑟) +P 𝑄)))
44 addcomprg 7410 . . . . . . . . . . . . . 14 ((𝑄P ∧ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P) → (𝑄 +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩) = (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 𝑄))
4532, 30, 44syl2anc 409 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) → (𝑄 +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩) = (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 𝑄))
4645oveq2d 5798 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) → (((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P (𝑄 +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩)) = (((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 𝑄)))
4746breq1d 3947 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) → ((((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P (𝑄 +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩))<P ((𝐹𝑟) +P 𝑄) ↔ (((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 𝑄))<P ((𝐹𝑟) +P 𝑄)))
4835, 43, 473bitr4rd 220 . . . . . . . . . 10 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) → ((((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P (𝑄 +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩))<P ((𝐹𝑟) +P 𝑄) ↔ (((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩)<P (𝐹𝑟)))
4923, 48mtbird 663 . . . . . . . . 9 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ 𝑏N) → ¬ (((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P (𝑄 +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩))<P ((𝐹𝑟) +P 𝑄))
5049nrexdv 2528 . . . . . . . 8 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → ¬ ∃𝑏N (((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P (𝑄 +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩))<P ((𝐹𝑟) +P 𝑄))
51 breq1 3940 . . . . . . . . . . . . . 14 (𝑝 = 𝑙 → (𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q ) ↔ 𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
5251cbvabv 2265 . . . . . . . . . . . . 13 {𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )} = {𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}
53 breq2 3941 . . . . . . . . . . . . . 14 (𝑞 = 𝑢 → ((*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢))
5453cbvabv 2265 . . . . . . . . . . . . 13 {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞} = {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}
5552, 54opeq12i 3718 . . . . . . . . . . . 12 ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩
5655oveq2i 5793 . . . . . . . . . . 11 ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩)
57 breq1 3940 . . . . . . . . . . . . . 14 (𝑝 = 𝑙 → (𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q ) ↔ 𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )))
5857cbvabv 2265 . . . . . . . . . . . . 13 {𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )} = {𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}
59 breq2 3941 . . . . . . . . . . . . . 14 (𝑞 = 𝑢 → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢))
6059cbvabv 2265 . . . . . . . . . . . . 13 {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞} = {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}
6158, 60opeq12i 3718 . . . . . . . . . . . 12 ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩
6261oveq2i 5793 . . . . . . . . . . 11 (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) = (𝑄 +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩)
6356, 62oveq12i 5794 . . . . . . . . . 10 (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)) = (((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P (𝑄 +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩))
6463breq1i 3944 . . . . . . . . 9 ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑟) +P 𝑄) ↔ (((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P (𝑄 +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩))<P ((𝐹𝑟) +P 𝑄))
6564rexbii 2445 . . . . . . . 8 (∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑟) +P 𝑄) ↔ ∃𝑏N (((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑢}⟩) +P (𝑄 +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑢}⟩))<P ((𝐹𝑟) +P 𝑄))
6650, 65sylnibr 667 . . . . . . 7 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → ¬ ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑟) +P 𝑄))
6717adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → 𝐹:NP)
6819adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
69 caucvgprpr.bnd . . . . . . . . 9 (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
7069adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → ∀𝑚N 𝐴<P (𝐹𝑚))
7131adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → 𝑄P)
72 simprl 521 . . . . . . . 8 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → 𝑟N)
7367, 68, 70, 5, 71, 72caucvgprprlemexb 7539 . . . . . . 7 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → (((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄) → ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑟) +P 𝑄)))
7466, 73mtod 653 . . . . . 6 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → ¬ ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))
75 simprr 522 . . . . . . 7 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))
76 caucvgprprlemaddq.x . . . . . . . . . 10 (𝜑𝑋P)
7776adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → 𝑋P)
78 recnnpr 7380 . . . . . . . . . 10 (𝑟N → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
7972, 78syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
80 addclpr 7369 . . . . . . . . 9 ((𝑋P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
8177, 79, 80syl2anc 409 . . . . . . . 8 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
8267, 72ffvelrnd 5564 . . . . . . . . 9 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → (𝐹𝑟) ∈ P)
83 addclpr 7369 . . . . . . . . 9 (((𝐹𝑟) ∈ P𝑄P) → ((𝐹𝑟) +P 𝑄) ∈ P)
8482, 71, 83syl2anc 409 . . . . . . . 8 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → ((𝐹𝑟) +P 𝑄) ∈ P)
8517, 19, 69, 5caucvgprprlemcl 7536 . . . . . . . . . . 11 (𝜑𝐿P)
8685adantr 274 . . . . . . . . . 10 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → 𝐿P)
87 addclpr 7369 . . . . . . . . . 10 ((𝐿P𝑄P) → (𝐿 +P 𝑄) ∈ P)
8886, 71, 87syl2anc 409 . . . . . . . . 9 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → (𝐿 +P 𝑄) ∈ P)
89 addclpr 7369 . . . . . . . . 9 (((𝐿 +P 𝑄) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
9088, 79, 89syl2anc 409 . . . . . . . 8 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
91 ltsopr 7428 . . . . . . . . 9 <P Or P
92 sowlin 4250 . . . . . . . . 9 ((<P Or P ∧ ((𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ ((𝐹𝑟) +P 𝑄) ∈ P ∧ ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)) → ((𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄) → ((𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) ∨ ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))))
9391, 92mpan 421 . . . . . . . 8 (((𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ ((𝐹𝑟) +P 𝑄) ∈ P ∧ ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P) → ((𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄) → ((𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) ∨ ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))))
9481, 84, 90, 93syl3anc 1217 . . . . . . 7 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → ((𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄) → ((𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) ∨ ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))))
9575, 94mpd 13 . . . . . 6 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → ((𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) ∨ ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄)))
9674, 95ecased 1328 . . . . 5 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩))
9736adantl 275 . . . . . 6 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ (𝑓P𝑔PP)) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
9841adantl 275 . . . . . 6 (((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
9997, 77, 88, 79, 98caovord2d 5948 . . . . 5 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → (𝑋<P (𝐿 +P 𝑄) ↔ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)))
10096, 99mpbird 166 . . . 4 ((𝜑 ∧ (𝑟N ∧ (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))) → 𝑋<P (𝐿 +P 𝑄))
101100exp32 363 . . 3 (𝜑 → (𝑟N → ((𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄) → 𝑋<P (𝐿 +P 𝑄))))
1022, 16, 101rexlimd 2549 . 2 (𝜑 → (∃𝑟N (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄) → 𝑋<P (𝐿 +P 𝑄)))
1031, 102mpd 13 1 (𝜑𝑋<P (𝐿 +P 𝑄))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  w3a 963   = wceq 1332  wcel 1481  {cab 2126  wral 2417  wrex 2418  {crab 2421  cop 3535   class class class wbr 3937   Or wor 4225  wf 5127  cfv 5131  (class class class)co 5782  1oc1o 6314  [cec 6435  Ncnpi 7104   <N clti 7107   ~Q ceq 7111  Qcnq 7112   +Q cplq 7114  *Qcrq 7116   <Q cltq 7117  Pcnp 7123   +P cpp 7125  <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300  df-iltp 7302
This theorem is referenced by:  caucvgprprlem1  7541
  Copyright terms: Public domain W3C validator