ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsle GIF version

Theorem dvdsle 12199
Description: The divisors of a positive integer are bounded by it. The proof does not use /. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsle ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁𝑀𝑁))

Proof of Theorem dvdsle
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑀𝑁) → 𝑀𝑁)
21a1d 22 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑀𝑁) → (𝑀𝑁𝑀𝑁))
3 simplll 533 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → 𝑀 ∈ ℤ)
4 simpllr 534 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℕ)
5 simpr 110 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
6 simplr 528 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → 𝑁 < 𝑀)
73, 4, 5, 6dvdslelemd 12198 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑀) ≠ 𝑁)
87neneqd 2398 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → ¬ (𝑛 · 𝑀) = 𝑁)
98nrexdv 2600 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → ¬ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)
10 simpll 527 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → 𝑀 ∈ ℤ)
11 simplr 528 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → 𝑁 ∈ ℕ)
1211nnzd 9501 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → 𝑁 ∈ ℤ)
13 divides 12144 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
1410, 12, 13syl2anc 411 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
159, 14mtbird 675 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → ¬ 𝑀𝑁)
1615pm2.21d 620 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → (𝑀𝑁𝑀𝑁))
17 nnz 9398 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
18 zlelttric 9424 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑁 < 𝑀))
1917, 18sylan2 286 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁𝑁 < 𝑀))
202, 16, 19mpjaodan 800 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2177  wrex 2486   class class class wbr 4047  (class class class)co 5951   · cmul 7937   < clt 8114  cle 8115  cn 9043  cz 9379  cdvds 12142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-po 4347  df-iso 4348  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-n0 9303  df-z 9380  df-q 9748  df-dvds 12143
This theorem is referenced by:  dvdsleabs  12200  dvdsssfz1  12207  fzm1ndvds  12211  fzo0dvdseq  12212  n2dvds1  12267  gcd1  12352  bezoutlemle  12373  dfgcd2  12379  gcdzeq  12387  bezoutr1  12398  lcmgcdlem  12443  ncoprmgcdne1b  12455  qredeq  12462  isprm3  12484  prmdvdsfz  12505  isprm5lem  12507  isprm6  12513  prmfac1  12518  pcpre1  12659  pcidlem  12690  pcprod  12713  pcfac  12717  pockthg  12724  1arith  12734  4sqlem11  12768  znidomb  14464  lgsdir  15556  lgsdilem2  15557  lgsne0  15559  lgsquadlem2  15599  2sqlem8  15644
  Copyright terms: Public domain W3C validator