| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsle | GIF version | ||
| Description: The divisors of a positive integer are bounded by it. The proof does not use /. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvdsle | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ 𝑁) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑀 ≤ 𝑁) → (𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁)) |
| 3 | simplll 533 | . . . . . . 7 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 4 | simpllr 534 | . . . . . . 7 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℕ) | |
| 5 | simpr 110 | . . . . . . 7 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
| 6 | simplr 528 | . . . . . . 7 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → 𝑁 < 𝑀) | |
| 7 | 3, 4, 5, 6 | dvdslelemd 12362 | . . . . . 6 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑀) ≠ 𝑁) |
| 8 | 7 | neneqd 2421 | . . . . 5 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → ¬ (𝑛 · 𝑀) = 𝑁) |
| 9 | 8 | nrexdv 2623 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → ¬ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁) |
| 10 | simpll 527 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → 𝑀 ∈ ℤ) | |
| 11 | simplr 528 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → 𝑁 ∈ ℕ) | |
| 12 | 11 | nnzd 9576 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → 𝑁 ∈ ℤ) |
| 13 | divides 12308 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) | |
| 14 | 10, 12, 13 | syl2anc 411 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| 15 | 9, 14 | mtbird 677 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → ¬ 𝑀 ∥ 𝑁) |
| 16 | 15 | pm2.21d 622 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → (𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁)) |
| 17 | nnz 9473 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 18 | zlelttric 9499 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ∨ 𝑁 < 𝑀)) | |
| 19 | 17, 18 | sylan2 286 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ 𝑁 ∨ 𝑁 < 𝑀)) |
| 20 | 2, 16, 19 | mpjaodan 803 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 class class class wbr 4083 (class class class)co 6007 · cmul 8012 < clt 8189 ≤ cle 8190 ℕcn 9118 ℤcz 9454 ∥ cdvds 12306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-n0 9378 df-z 9455 df-q 9823 df-dvds 12307 |
| This theorem is referenced by: dvdsleabs 12364 dvdsssfz1 12371 fzm1ndvds 12375 fzo0dvdseq 12376 n2dvds1 12431 gcd1 12516 bezoutlemle 12537 dfgcd2 12543 gcdzeq 12551 bezoutr1 12562 lcmgcdlem 12607 ncoprmgcdne1b 12619 qredeq 12626 isprm3 12648 prmdvdsfz 12669 isprm5lem 12671 isprm6 12677 prmfac1 12682 pcpre1 12823 pcidlem 12854 pcprod 12877 pcfac 12881 pockthg 12888 1arith 12898 4sqlem11 12932 znidomb 14630 lgsdir 15722 lgsdilem2 15723 lgsne0 15725 lgsquadlem2 15765 2sqlem8 15810 |
| Copyright terms: Public domain | W3C validator |