Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvdsle | GIF version |
Description: The divisors of a positive integer are bounded by it. The proof does not use /. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvdsle | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ 𝑁) | |
2 | 1 | a1d 22 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑀 ≤ 𝑁) → (𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁)) |
3 | simplll 528 | . . . . . . 7 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → 𝑀 ∈ ℤ) | |
4 | simpllr 529 | . . . . . . 7 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℕ) | |
5 | simpr 109 | . . . . . . 7 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
6 | simplr 525 | . . . . . . 7 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → 𝑁 < 𝑀) | |
7 | 3, 4, 5, 6 | dvdslelemd 11803 | . . . . . 6 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑀) ≠ 𝑁) |
8 | 7 | neneqd 2361 | . . . . 5 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → ¬ (𝑛 · 𝑀) = 𝑁) |
9 | 8 | nrexdv 2563 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → ¬ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁) |
10 | simpll 524 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → 𝑀 ∈ ℤ) | |
11 | simplr 525 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → 𝑁 ∈ ℕ) | |
12 | 11 | nnzd 9333 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → 𝑁 ∈ ℤ) |
13 | divides 11751 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) | |
14 | 10, 12, 13 | syl2anc 409 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
15 | 9, 14 | mtbird 668 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → ¬ 𝑀 ∥ 𝑁) |
16 | 15 | pm2.21d 614 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → (𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁)) |
17 | nnz 9231 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
18 | zlelttric 9257 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ∨ 𝑁 < 𝑀)) | |
19 | 17, 18 | sylan2 284 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ 𝑁 ∨ 𝑁 < 𝑀)) |
20 | 2, 16, 19 | mpjaodan 793 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 class class class wbr 3989 (class class class)co 5853 · cmul 7779 < clt 7954 ≤ cle 7955 ℕcn 8878 ℤcz 9212 ∥ cdvds 11749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-n0 9136 df-z 9213 df-q 9579 df-dvds 11750 |
This theorem is referenced by: dvdsleabs 11805 dvdsssfz1 11812 fzm1ndvds 11816 fzo0dvdseq 11817 n2dvds1 11871 gcd1 11942 bezoutlemle 11963 dfgcd2 11969 gcdzeq 11977 bezoutr1 11988 lcmgcdlem 12031 ncoprmgcdne1b 12043 qredeq 12050 isprm3 12072 prmdvdsfz 12093 isprm5lem 12095 isprm6 12101 prmfac1 12106 pcpre1 12246 pcidlem 12276 pcprod 12298 pcfac 12302 pockthg 12309 1arith 12319 lgsdir 13730 lgsdilem2 13731 lgsne0 13733 2sqlem8 13753 |
Copyright terms: Public domain | W3C validator |