ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsle GIF version

Theorem dvdsle 12011
Description: The divisors of a positive integer are bounded by it. The proof does not use /. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsle ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁𝑀𝑁))

Proof of Theorem dvdsle
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑀𝑁) → 𝑀𝑁)
21a1d 22 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑀𝑁) → (𝑀𝑁𝑀𝑁))
3 simplll 533 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → 𝑀 ∈ ℤ)
4 simpllr 534 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℕ)
5 simpr 110 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
6 simplr 528 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → 𝑁 < 𝑀)
73, 4, 5, 6dvdslelemd 12010 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑀) ≠ 𝑁)
87neneqd 2388 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) ∧ 𝑛 ∈ ℤ) → ¬ (𝑛 · 𝑀) = 𝑁)
98nrexdv 2590 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → ¬ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)
10 simpll 527 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → 𝑀 ∈ ℤ)
11 simplr 528 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → 𝑁 ∈ ℕ)
1211nnzd 9449 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → 𝑁 ∈ ℤ)
13 divides 11956 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
1410, 12, 13syl2anc 411 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
159, 14mtbird 674 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → ¬ 𝑀𝑁)
1615pm2.21d 620 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 < 𝑀) → (𝑀𝑁𝑀𝑁))
17 nnz 9347 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
18 zlelttric 9373 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑁 < 𝑀))
1917, 18sylan2 286 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁𝑁 < 𝑀))
202, 16, 19mpjaodan 799 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  wrex 2476   class class class wbr 4034  (class class class)co 5923   · cmul 7886   < clt 8063  cle 8064  cn 8992  cz 9328  cdvds 11954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-n0 9252  df-z 9329  df-q 9696  df-dvds 11955
This theorem is referenced by:  dvdsleabs  12012  dvdsssfz1  12019  fzm1ndvds  12023  fzo0dvdseq  12024  n2dvds1  12079  gcd1  12164  bezoutlemle  12185  dfgcd2  12191  gcdzeq  12199  bezoutr1  12210  lcmgcdlem  12255  ncoprmgcdne1b  12267  qredeq  12274  isprm3  12296  prmdvdsfz  12317  isprm5lem  12319  isprm6  12325  prmfac1  12330  pcpre1  12471  pcidlem  12502  pcprod  12525  pcfac  12529  pockthg  12536  1arith  12546  4sqlem11  12580  znidomb  14224  lgsdir  15286  lgsdilem2  15287  lgsne0  15289  lgsquadlem2  15329  2sqlem8  15374
  Copyright terms: Public domain W3C validator