| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnm1nn0 | GIF version | ||
| Description: A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nnm1nn0 | ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn1m1nn 9074 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ)) | |
| 2 | oveq1 5964 | . . . . . 6 ⊢ (𝑁 = 1 → (𝑁 − 1) = (1 − 1)) | |
| 3 | 1m1e0 9125 | . . . . . 6 ⊢ (1 − 1) = 0 | |
| 4 | 2, 3 | eqtrdi 2255 | . . . . 5 ⊢ (𝑁 = 1 → (𝑁 − 1) = 0) |
| 5 | 4 | orim1i 762 | . . . 4 ⊢ ((𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ) → ((𝑁 − 1) = 0 ∨ (𝑁 − 1) ∈ ℕ)) |
| 6 | 1, 5 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) = 0 ∨ (𝑁 − 1) ∈ ℕ)) |
| 7 | 6 | orcomd 731 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) = 0)) |
| 8 | elnn0 9317 | . 2 ⊢ ((𝑁 − 1) ∈ ℕ0 ↔ ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) = 0)) | |
| 9 | 7, 8 | sylibr 134 | 1 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 = wceq 1373 ∈ wcel 2177 (class class class)co 5957 0cc0 7945 1c1 7946 − cmin 8263 ℕcn 9056 ℕ0cn0 9315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-sub 8265 df-inn 9057 df-n0 9316 |
| This theorem is referenced by: elnn0nn 9357 nnaddm1cl 9454 nn0n0n1ge2 9463 fseq1m1p1 10237 nn0ennn 10600 expm1t 10734 expgt1 10744 nn0ltexp2 10876 bcn1 10925 bcm1k 10927 bcn2m1 10936 resqrexlemnm 11404 resqrexlemcvg 11405 resqrexlemga 11409 binomlem 11869 arisum 11884 arisum2 11885 cvgratnnlemnexp 11910 cvgratnnlemfm 11915 mertenslem2 11922 iddvdsexp 12201 dvdsfac 12246 oexpneg 12263 bitsfzolem 12340 phibnd 12614 phiprmpw 12619 prmdiv 12632 oddprm 12657 fldivp1 12746 prmpwdvds 12753 4sqlem12 12800 4sqlem19 12807 gsumwsubmcl 13403 gsumwmhm 13405 dvexp 15258 dvply1 15312 wilthlem1 15527 1sgm2ppw 15542 perfect1 15545 perfect 15548 lgslem1 15552 lgsquadlem1 15629 lgsquad2lem2 15634 m1lgs 15637 |
| Copyright terms: Public domain | W3C validator |