| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnm1nn0 | GIF version | ||
| Description: A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nnm1nn0 | ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn1m1nn 9027 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ)) | |
| 2 | oveq1 5932 | . . . . . 6 ⊢ (𝑁 = 1 → (𝑁 − 1) = (1 − 1)) | |
| 3 | 1m1e0 9078 | . . . . . 6 ⊢ (1 − 1) = 0 | |
| 4 | 2, 3 | eqtrdi 2245 | . . . . 5 ⊢ (𝑁 = 1 → (𝑁 − 1) = 0) |
| 5 | 4 | orim1i 761 | . . . 4 ⊢ ((𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ) → ((𝑁 − 1) = 0 ∨ (𝑁 − 1) ∈ ℕ)) |
| 6 | 1, 5 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) = 0 ∨ (𝑁 − 1) ∈ ℕ)) |
| 7 | 6 | orcomd 730 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) = 0)) |
| 8 | elnn0 9270 | . 2 ⊢ ((𝑁 − 1) ∈ ℕ0 ↔ ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) = 0)) | |
| 9 | 7, 8 | sylibr 134 | 1 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 0cc0 7898 1c1 7899 − cmin 8216 ℕcn 9009 ℕ0cn0 9268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8218 df-inn 9010 df-n0 9269 |
| This theorem is referenced by: elnn0nn 9310 nnaddm1cl 9406 nn0n0n1ge2 9415 fseq1m1p1 10189 nn0ennn 10544 expm1t 10678 expgt1 10688 nn0ltexp2 10820 bcn1 10869 bcm1k 10871 bcn2m1 10880 resqrexlemnm 11202 resqrexlemcvg 11203 resqrexlemga 11207 binomlem 11667 arisum 11682 arisum2 11683 cvgratnnlemnexp 11708 cvgratnnlemfm 11713 mertenslem2 11720 iddvdsexp 11999 dvdsfac 12044 oexpneg 12061 bitsfzolem 12138 phibnd 12412 phiprmpw 12417 prmdiv 12430 oddprm 12455 fldivp1 12544 prmpwdvds 12551 4sqlem12 12598 4sqlem19 12605 gsumwsubmcl 13200 gsumwmhm 13202 dvexp 15055 dvply1 15109 wilthlem1 15324 1sgm2ppw 15339 perfect1 15342 perfect 15345 lgslem1 15349 lgsquadlem1 15426 lgsquad2lem2 15431 m1lgs 15434 |
| Copyright terms: Public domain | W3C validator |