ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnm1nn0 GIF version

Theorem nnm1nn0 9247
Description: A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nnm1nn0 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)

Proof of Theorem nnm1nn0
StepHypRef Expression
1 nn1m1nn 8967 . . . 4 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ))
2 oveq1 5903 . . . . . 6 (𝑁 = 1 → (𝑁 − 1) = (1 − 1))
3 1m1e0 9018 . . . . . 6 (1 − 1) = 0
42, 3eqtrdi 2238 . . . . 5 (𝑁 = 1 → (𝑁 − 1) = 0)
54orim1i 761 . . . 4 ((𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ) → ((𝑁 − 1) = 0 ∨ (𝑁 − 1) ∈ ℕ))
61, 5syl 14 . . 3 (𝑁 ∈ ℕ → ((𝑁 − 1) = 0 ∨ (𝑁 − 1) ∈ ℕ))
76orcomd 730 . 2 (𝑁 ∈ ℕ → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) = 0))
8 elnn0 9208 . 2 ((𝑁 − 1) ∈ ℕ0 ↔ ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) = 0))
97, 8sylibr 134 1 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709   = wceq 1364  wcel 2160  (class class class)co 5896  0cc0 7841  1c1 7842  cmin 8158  cn 8949  0cn0 9206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-distr 7945  ax-i2m1 7946  ax-0id 7949  ax-rnegex 7950  ax-cnre 7952
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-sub 8160  df-inn 8950  df-n0 9207
This theorem is referenced by:  elnn0nn  9248  nnaddm1cl  9344  nn0n0n1ge2  9353  fseq1m1p1  10125  nn0ennn  10464  expm1t  10579  expgt1  10589  nn0ltexp2  10721  bcn1  10770  bcm1k  10772  bcn2m1  10781  resqrexlemnm  11059  resqrexlemcvg  11060  resqrexlemga  11064  binomlem  11523  arisum  11538  arisum2  11539  cvgratnnlemnexp  11564  cvgratnnlemfm  11569  mertenslem2  11576  iddvdsexp  11854  dvdsfac  11898  oexpneg  11914  phibnd  12249  phiprmpw  12254  prmdiv  12267  oddprm  12291  fldivp1  12380  prmpwdvds  12387  4sqlem12  12434  4sqlem19  12441  dvexp  14635  wilthlem1  14858  lgslem1  14862  m1lgs  14913
  Copyright terms: Public domain W3C validator