![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnm1nn0 | GIF version |
Description: A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nnm1nn0 | ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn1m1nn 9000 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ)) | |
2 | oveq1 5925 | . . . . . 6 ⊢ (𝑁 = 1 → (𝑁 − 1) = (1 − 1)) | |
3 | 1m1e0 9051 | . . . . . 6 ⊢ (1 − 1) = 0 | |
4 | 2, 3 | eqtrdi 2242 | . . . . 5 ⊢ (𝑁 = 1 → (𝑁 − 1) = 0) |
5 | 4 | orim1i 761 | . . . 4 ⊢ ((𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ) → ((𝑁 − 1) = 0 ∨ (𝑁 − 1) ∈ ℕ)) |
6 | 1, 5 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) = 0 ∨ (𝑁 − 1) ∈ ℕ)) |
7 | 6 | orcomd 730 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) = 0)) |
8 | elnn0 9242 | . 2 ⊢ ((𝑁 − 1) ∈ ℕ0 ↔ ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) = 0)) | |
9 | 7, 8 | sylibr 134 | 1 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 0cc0 7872 1c1 7873 − cmin 8190 ℕcn 8982 ℕ0cn0 9240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sub 8192 df-inn 8983 df-n0 9241 |
This theorem is referenced by: elnn0nn 9282 nnaddm1cl 9378 nn0n0n1ge2 9387 fseq1m1p1 10161 nn0ennn 10504 expm1t 10638 expgt1 10648 nn0ltexp2 10780 bcn1 10829 bcm1k 10831 bcn2m1 10840 resqrexlemnm 11162 resqrexlemcvg 11163 resqrexlemga 11167 binomlem 11626 arisum 11641 arisum2 11642 cvgratnnlemnexp 11667 cvgratnnlemfm 11672 mertenslem2 11679 iddvdsexp 11958 dvdsfac 12002 oexpneg 12018 phibnd 12355 phiprmpw 12360 prmdiv 12373 oddprm 12397 fldivp1 12486 prmpwdvds 12493 4sqlem12 12540 4sqlem19 12547 gsumwsubmcl 13068 gsumwmhm 13070 dvexp 14860 wilthlem1 15112 lgslem1 15116 lgsquadlem1 15191 m1lgs 15192 |
Copyright terms: Public domain | W3C validator |