ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnm1nn0 GIF version

Theorem nnm1nn0 8647
Description: A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nnm1nn0 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)

Proof of Theorem nnm1nn0
StepHypRef Expression
1 nn1m1nn 8375 . . . 4 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ))
2 oveq1 5620 . . . . . 6 (𝑁 = 1 → (𝑁 − 1) = (1 − 1))
3 1m1e0 8426 . . . . . 6 (1 − 1) = 0
42, 3syl6eq 2133 . . . . 5 (𝑁 = 1 → (𝑁 − 1) = 0)
54orim1i 710 . . . 4 ((𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ) → ((𝑁 − 1) = 0 ∨ (𝑁 − 1) ∈ ℕ))
61, 5syl 14 . . 3 (𝑁 ∈ ℕ → ((𝑁 − 1) = 0 ∨ (𝑁 − 1) ∈ ℕ))
76orcomd 681 . 2 (𝑁 ∈ ℕ → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) = 0))
8 elnn0 8608 . 2 ((𝑁 − 1) ∈ ℕ0 ↔ ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) = 0))
97, 8sylibr 132 1 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 662   = wceq 1287  wcel 1436  (class class class)co 5613  0cc0 7294  1c1 7295  cmin 7597  cn 8357  0cn0 8606
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010  ax-setind 4326  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-addcom 7389  ax-addass 7391  ax-distr 7393  ax-i2m1 7394  ax-0id 7397  ax-rnegex 7398  ax-cnre 7400
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-br 3821  df-opab 3875  df-id 4094  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-iota 4946  df-fun 4983  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-sub 7599  df-inn 8358  df-n0 8607
This theorem is referenced by:  elnn0nn  8648  nnaddm1cl  8744  nn0n0n1ge2  8750  fseq1m1p1  9439  nn0ennn  9768  expm1t  9881  expgt1  9891  bcn1  10062  bcm1k  10064  bcn2m1  10073  resqrexlemnm  10346  resqrexlemcvg  10347  resqrexlemga  10351  iddvdsexp  10695  dvdsfac  10736  oexpneg  10752  phibnd  11068  phiprmpw  11073
  Copyright terms: Public domain W3C validator