| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnm1nn0 | GIF version | ||
| Description: A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nnm1nn0 | ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn1m1nn 9124 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ)) | |
| 2 | oveq1 6007 | . . . . . 6 ⊢ (𝑁 = 1 → (𝑁 − 1) = (1 − 1)) | |
| 3 | 1m1e0 9175 | . . . . . 6 ⊢ (1 − 1) = 0 | |
| 4 | 2, 3 | eqtrdi 2278 | . . . . 5 ⊢ (𝑁 = 1 → (𝑁 − 1) = 0) |
| 5 | 4 | orim1i 765 | . . . 4 ⊢ ((𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ) → ((𝑁 − 1) = 0 ∨ (𝑁 − 1) ∈ ℕ)) |
| 6 | 1, 5 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) = 0 ∨ (𝑁 − 1) ∈ ℕ)) |
| 7 | 6 | orcomd 734 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) = 0)) |
| 8 | elnn0 9367 | . 2 ⊢ ((𝑁 − 1) ∈ ℕ0 ↔ ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) = 0)) | |
| 9 | 7, 8 | sylibr 134 | 1 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 = wceq 1395 ∈ wcel 2200 (class class class)co 6000 0cc0 7995 1c1 7996 − cmin 8313 ℕcn 9106 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sub 8315 df-inn 9107 df-n0 9366 |
| This theorem is referenced by: elnn0nn 9407 nnaddm1cl 9504 nn0n0n1ge2 9513 fseq1m1p1 10287 nn0ennn 10650 expm1t 10784 expgt1 10794 nn0ltexp2 10926 bcn1 10975 bcm1k 10977 bcn2m1 10986 resqrexlemnm 11524 resqrexlemcvg 11525 resqrexlemga 11529 binomlem 11989 arisum 12004 arisum2 12005 cvgratnnlemnexp 12030 cvgratnnlemfm 12035 mertenslem2 12042 iddvdsexp 12321 dvdsfac 12366 oexpneg 12383 bitsfzolem 12460 phibnd 12734 phiprmpw 12739 prmdiv 12752 oddprm 12777 fldivp1 12866 prmpwdvds 12873 4sqlem12 12920 4sqlem19 12927 gsumwsubmcl 13524 gsumwmhm 13526 dvexp 15379 dvply1 15433 wilthlem1 15648 1sgm2ppw 15663 perfect1 15666 perfect 15669 lgslem1 15673 lgsquadlem1 15750 lgsquad2lem2 15755 m1lgs 15758 |
| Copyright terms: Public domain | W3C validator |