| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnm1nn0 | GIF version | ||
| Description: A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nnm1nn0 | ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn1m1nn 9008 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ)) | |
| 2 | oveq1 5929 | . . . . . 6 ⊢ (𝑁 = 1 → (𝑁 − 1) = (1 − 1)) | |
| 3 | 1m1e0 9059 | . . . . . 6 ⊢ (1 − 1) = 0 | |
| 4 | 2, 3 | eqtrdi 2245 | . . . . 5 ⊢ (𝑁 = 1 → (𝑁 − 1) = 0) |
| 5 | 4 | orim1i 761 | . . . 4 ⊢ ((𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ) → ((𝑁 − 1) = 0 ∨ (𝑁 − 1) ∈ ℕ)) |
| 6 | 1, 5 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) = 0 ∨ (𝑁 − 1) ∈ ℕ)) |
| 7 | 6 | orcomd 730 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) = 0)) |
| 8 | elnn0 9251 | . 2 ⊢ ((𝑁 − 1) ∈ ℕ0 ↔ ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) = 0)) | |
| 9 | 7, 8 | sylibr 134 | 1 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2167 (class class class)co 5922 0cc0 7879 1c1 7880 − cmin 8197 ℕcn 8990 ℕ0cn0 9249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 df-inn 8991 df-n0 9250 |
| This theorem is referenced by: elnn0nn 9291 nnaddm1cl 9387 nn0n0n1ge2 9396 fseq1m1p1 10170 nn0ennn 10525 expm1t 10659 expgt1 10669 nn0ltexp2 10801 bcn1 10850 bcm1k 10852 bcn2m1 10861 resqrexlemnm 11183 resqrexlemcvg 11184 resqrexlemga 11188 binomlem 11648 arisum 11663 arisum2 11664 cvgratnnlemnexp 11689 cvgratnnlemfm 11694 mertenslem2 11701 iddvdsexp 11980 dvdsfac 12025 oexpneg 12042 bitsfzolem 12118 phibnd 12385 phiprmpw 12390 prmdiv 12403 oddprm 12428 fldivp1 12517 prmpwdvds 12524 4sqlem12 12571 4sqlem19 12578 gsumwsubmcl 13128 gsumwmhm 13130 dvexp 14947 dvply1 15001 wilthlem1 15216 1sgm2ppw 15231 perfect1 15234 perfect 15237 lgslem1 15241 lgsquadlem1 15318 lgsquad2lem2 15323 m1lgs 15326 |
| Copyright terms: Public domain | W3C validator |