| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmdc | GIF version | ||
| Description: Primality is decidable. (Contributed by Jim Kingdon, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| prmdc | ⊢ (𝑁 ∈ ℕ → DECID 𝑁 ∈ ℙ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nuz2 9680 | . . . . . . 7 ⊢ ¬ 1 ∈ (ℤ≥‘2) | |
| 2 | eleq1 2259 | . . . . . . 7 ⊢ (𝑁 = 1 → (𝑁 ∈ (ℤ≥‘2) ↔ 1 ∈ (ℤ≥‘2))) | |
| 3 | 1, 2 | mtbiri 676 | . . . . . 6 ⊢ (𝑁 = 1 → ¬ 𝑁 ∈ (ℤ≥‘2)) |
| 4 | 3 | orim1i 761 | . . . . 5 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) → (¬ 𝑁 ∈ (ℤ≥‘2) ∨ 𝑁 ∈ (ℤ≥‘2))) |
| 5 | 4 | orcomd 730 | . . . 4 ⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2)) → (𝑁 ∈ (ℤ≥‘2) ∨ ¬ 𝑁 ∈ (ℤ≥‘2))) |
| 6 | elnn1uz2 9681 | . . . 4 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) | |
| 7 | df-dc 836 | . . . 4 ⊢ (DECID 𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ (ℤ≥‘2) ∨ ¬ 𝑁 ∈ (ℤ≥‘2))) | |
| 8 | 5, 6, 7 | 3imtr4i 201 | . . 3 ⊢ (𝑁 ∈ ℕ → DECID 𝑁 ∈ (ℤ≥‘2)) |
| 9 | 2z 9354 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 10 | 9 | a1i 9 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℤ) |
| 11 | nnz 9345 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 12 | peano2zm 9364 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
| 13 | 11, 12 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℤ) |
| 14 | 10, 13 | fzfigd 10523 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2...(𝑁 − 1)) ∈ Fin) |
| 15 | elfzelz 10100 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2...(𝑁 − 1)) → 𝑥 ∈ ℤ) | |
| 16 | 15 | adantl 277 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (2...(𝑁 − 1))) → 𝑥 ∈ ℤ) |
| 17 | 1red 8041 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (2...(𝑁 − 1))) → 1 ∈ ℝ) | |
| 18 | 2re 9060 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
| 19 | 18 | a1i 9 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (2...(𝑁 − 1))) → 2 ∈ ℝ) |
| 20 | 16 | zred 9448 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (2...(𝑁 − 1))) → 𝑥 ∈ ℝ) |
| 21 | 1le2 9199 | . . . . . . . . . 10 ⊢ 1 ≤ 2 | |
| 22 | 21 | a1i 9 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (2...(𝑁 − 1))) → 1 ≤ 2) |
| 23 | elfzle1 10102 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (2...(𝑁 − 1)) → 2 ≤ 𝑥) | |
| 24 | 23 | adantl 277 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (2...(𝑁 − 1))) → 2 ≤ 𝑥) |
| 25 | 17, 19, 20, 22, 24 | letrd 8150 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (2...(𝑁 − 1))) → 1 ≤ 𝑥) |
| 26 | elnnz1 9349 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ ↔ (𝑥 ∈ ℤ ∧ 1 ≤ 𝑥)) | |
| 27 | 16, 25, 26 | sylanbrc 417 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (2...(𝑁 − 1))) → 𝑥 ∈ ℕ) |
| 28 | 11 | adantr 276 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℤ) |
| 29 | dvdsdc 11963 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑥 ∥ 𝑁) | |
| 30 | 27, 28, 29 | syl2anc 411 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (2...(𝑁 − 1))) → DECID 𝑥 ∥ 𝑁) |
| 31 | dcn 843 | . . . . . 6 ⊢ (DECID 𝑥 ∥ 𝑁 → DECID ¬ 𝑥 ∥ 𝑁) | |
| 32 | 30, 31 | syl 14 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (2...(𝑁 − 1))) → DECID ¬ 𝑥 ∥ 𝑁) |
| 33 | 32 | ralrimiva 2570 | . . . 4 ⊢ (𝑁 ∈ ℕ → ∀𝑥 ∈ (2...(𝑁 − 1))DECID ¬ 𝑥 ∥ 𝑁) |
| 34 | dcfi 7047 | . . . 4 ⊢ (((2...(𝑁 − 1)) ∈ Fin ∧ ∀𝑥 ∈ (2...(𝑁 − 1))DECID ¬ 𝑥 ∥ 𝑁) → DECID ∀𝑥 ∈ (2...(𝑁 − 1)) ¬ 𝑥 ∥ 𝑁) | |
| 35 | 14, 33, 34 | syl2anc 411 | . . 3 ⊢ (𝑁 ∈ ℕ → DECID ∀𝑥 ∈ (2...(𝑁 − 1)) ¬ 𝑥 ∥ 𝑁) |
| 36 | 8, 35 | dcand 934 | . 2 ⊢ (𝑁 ∈ ℕ → DECID (𝑁 ∈ (ℤ≥‘2) ∧ ∀𝑥 ∈ (2...(𝑁 − 1)) ¬ 𝑥 ∥ 𝑁)) |
| 37 | isprm3 12286 | . . 3 ⊢ (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ≥‘2) ∧ ∀𝑥 ∈ (2...(𝑁 − 1)) ¬ 𝑥 ∥ 𝑁)) | |
| 38 | 37 | dcbii 841 | . 2 ⊢ (DECID 𝑁 ∈ ℙ ↔ DECID (𝑁 ∈ (ℤ≥‘2) ∧ ∀𝑥 ∈ (2...(𝑁 − 1)) ¬ 𝑥 ∥ 𝑁)) |
| 39 | 36, 38 | sylibr 134 | 1 ⊢ (𝑁 ∈ ℕ → DECID 𝑁 ∈ ℙ) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ∀wral 2475 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 Fincfn 6799 ℝcr 7878 1c1 7880 ≤ cle 8062 − cmin 8197 ℕcn 8990 2c2 9041 ℤcz 9326 ℤ≥cuz 9601 ...cfz 10083 ∥ cdvds 11952 ℙcprime 12275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-1o 6474 df-2o 6475 df-er 6592 df-en 6800 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-dvds 11953 df-prm 12276 |
| This theorem is referenced by: pcmptcl 12511 pcmpt 12512 1arith 12536 prminf 12672 lgsval 15245 lgsfvalg 15246 lgsfcl2 15247 lgsval2lem 15251 lgsval4lem 15252 lgsneg 15265 lgsmod 15267 lgsdir 15276 lgsdilem2 15277 lgsdi 15278 lgsne0 15279 |
| Copyright terms: Public domain | W3C validator |