ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzonlteqm1 GIF version

Theorem elfzonlteqm1 9684
Description: If an element of a half-open integer range is not less than the upper bound of the range decreased by 1, it must be equal to the upper bound of the range decreased by 1. (Contributed by AV, 3-Nov-2018.)
Assertion
Ref Expression
elfzonlteqm1 ((𝐴 ∈ (0..^𝐵) ∧ ¬ 𝐴 < (𝐵 − 1)) → 𝐴 = (𝐵 − 1))

Proof of Theorem elfzonlteqm1
StepHypRef Expression
1 0z 8824 . . . 4 0 ∈ ℤ
2 elfzo0 9656 . . . . 5 (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵))
3 elnnuz 9118 . . . . . . . 8 (𝐵 ∈ ℕ ↔ 𝐵 ∈ (ℤ‘1))
43biimpi 119 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ (ℤ‘1))
5 0p1e1 8599 . . . . . . . . 9 (0 + 1) = 1
65a1i 9 . . . . . . . 8 (𝐵 ∈ ℕ → (0 + 1) = 1)
76fveq2d 5324 . . . . . . 7 (𝐵 ∈ ℕ → (ℤ‘(0 + 1)) = (ℤ‘1))
84, 7eleqtrrd 2168 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ (ℤ‘(0 + 1)))
983ad2ant2 966 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐵 ∈ (ℤ‘(0 + 1)))
102, 9sylbi 120 . . . 4 (𝐴 ∈ (0..^𝐵) → 𝐵 ∈ (ℤ‘(0 + 1)))
11 fzosplitsnm1 9683 . . . 4 ((0 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(0 + 1))) → (0..^𝐵) = ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))
121, 10, 11sylancr 406 . . 3 (𝐴 ∈ (0..^𝐵) → (0..^𝐵) = ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))
13 eleq2 2152 . . . 4 ((0..^𝐵) = ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) → (𝐴 ∈ (0..^𝐵) ↔ 𝐴 ∈ ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)})))
14 elun 3144 . . . . 5 (𝐴 ∈ ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) ↔ (𝐴 ∈ (0..^(𝐵 − 1)) ∨ 𝐴 ∈ {(𝐵 − 1)}))
15 elfzo0 9656 . . . . . . 7 (𝐴 ∈ (0..^(𝐵 − 1)) ↔ (𝐴 ∈ ℕ0 ∧ (𝐵 − 1) ∈ ℕ ∧ 𝐴 < (𝐵 − 1)))
16 pm2.24 587 . . . . . . . 8 (𝐴 < (𝐵 − 1) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1)))
17163ad2ant3 967 . . . . . . 7 ((𝐴 ∈ ℕ0 ∧ (𝐵 − 1) ∈ ℕ ∧ 𝐴 < (𝐵 − 1)) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1)))
1815, 17sylbi 120 . . . . . 6 (𝐴 ∈ (0..^(𝐵 − 1)) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1)))
19 elsni 3470 . . . . . . 7 (𝐴 ∈ {(𝐵 − 1)} → 𝐴 = (𝐵 − 1))
2019a1d 22 . . . . . 6 (𝐴 ∈ {(𝐵 − 1)} → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1)))
2118, 20jaoi 672 . . . . 5 ((𝐴 ∈ (0..^(𝐵 − 1)) ∨ 𝐴 ∈ {(𝐵 − 1)}) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1)))
2214, 21sylbi 120 . . . 4 (𝐴 ∈ ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1)))
2313, 22syl6bi 162 . . 3 ((0..^𝐵) = ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) → (𝐴 ∈ (0..^𝐵) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1))))
2412, 23mpcom 36 . 2 (𝐴 ∈ (0..^𝐵) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1)))
2524imp 123 1 ((𝐴 ∈ (0..^𝐵) ∧ ¬ 𝐴 < (𝐵 − 1)) → 𝐴 = (𝐵 − 1))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 665  w3a 925   = wceq 1290  wcel 1439  cun 3000  {csn 3452   class class class wbr 3853  cfv 5030  (class class class)co 5668  0cc0 7413  1c1 7414   + caddc 7416   < clt 7585  cmin 7716  cn 8485  0cn0 8736  cz 8813  cuz 9082  ..^cfzo 9616
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-cnex 7499  ax-resscn 7500  ax-1cn 7501  ax-1re 7502  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-addcom 7508  ax-addass 7510  ax-distr 7512  ax-i2m1 7513  ax-0lt1 7514  ax-0id 7516  ax-rnegex 7517  ax-cnre 7519  ax-pre-ltirr 7520  ax-pre-ltwlin 7521  ax-pre-lttrn 7522  ax-pre-apti 7523  ax-pre-ltadd 7524
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2624  df-sbc 2844  df-csb 2937  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-iun 3740  df-br 3854  df-opab 3908  df-mpt 3909  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-fv 5038  df-riota 5624  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-1st 5927  df-2nd 5928  df-pnf 7587  df-mnf 7588  df-xr 7589  df-ltxr 7590  df-le 7591  df-sub 7718  df-neg 7719  df-inn 8486  df-n0 8737  df-z 8814  df-uz 9083  df-fz 9488  df-fzo 9617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator