![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzonlteqm1 | GIF version |
Description: If an element of a half-open integer range is not less than the upper bound of the range decreased by 1, it must be equal to the upper bound of the range decreased by 1. (Contributed by AV, 3-Nov-2018.) |
Ref | Expression |
---|---|
elfzonlteqm1 | ⊢ ((𝐴 ∈ (0..^𝐵) ∧ ¬ 𝐴 < (𝐵 − 1)) → 𝐴 = (𝐵 − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 8824 | . . . 4 ⊢ 0 ∈ ℤ | |
2 | elfzo0 9656 | . . . . 5 ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) | |
3 | elnnuz 9118 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ ↔ 𝐵 ∈ (ℤ≥‘1)) | |
4 | 3 | biimpi 119 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ (ℤ≥‘1)) |
5 | 0p1e1 8599 | . . . . . . . . 9 ⊢ (0 + 1) = 1 | |
6 | 5 | a1i 9 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ → (0 + 1) = 1) |
7 | 6 | fveq2d 5324 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → (ℤ≥‘(0 + 1)) = (ℤ≥‘1)) |
8 | 4, 7 | eleqtrrd 2168 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ (ℤ≥‘(0 + 1))) |
9 | 8 | 3ad2ant2 966 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐵 ∈ (ℤ≥‘(0 + 1))) |
10 | 2, 9 | sylbi 120 | . . . 4 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐵 ∈ (ℤ≥‘(0 + 1))) |
11 | fzosplitsnm1 9683 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(0 + 1))) → (0..^𝐵) = ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)})) | |
12 | 1, 10, 11 | sylancr 406 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) → (0..^𝐵) = ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)})) |
13 | eleq2 2152 | . . . 4 ⊢ ((0..^𝐵) = ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) → (𝐴 ∈ (0..^𝐵) ↔ 𝐴 ∈ ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))) | |
14 | elun 3144 | . . . . 5 ⊢ (𝐴 ∈ ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) ↔ (𝐴 ∈ (0..^(𝐵 − 1)) ∨ 𝐴 ∈ {(𝐵 − 1)})) | |
15 | elfzo0 9656 | . . . . . . 7 ⊢ (𝐴 ∈ (0..^(𝐵 − 1)) ↔ (𝐴 ∈ ℕ0 ∧ (𝐵 − 1) ∈ ℕ ∧ 𝐴 < (𝐵 − 1))) | |
16 | pm2.24 587 | . . . . . . . 8 ⊢ (𝐴 < (𝐵 − 1) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1))) | |
17 | 16 | 3ad2ant3 967 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ (𝐵 − 1) ∈ ℕ ∧ 𝐴 < (𝐵 − 1)) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1))) |
18 | 15, 17 | sylbi 120 | . . . . . 6 ⊢ (𝐴 ∈ (0..^(𝐵 − 1)) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1))) |
19 | elsni 3470 | . . . . . . 7 ⊢ (𝐴 ∈ {(𝐵 − 1)} → 𝐴 = (𝐵 − 1)) | |
20 | 19 | a1d 22 | . . . . . 6 ⊢ (𝐴 ∈ {(𝐵 − 1)} → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1))) |
21 | 18, 20 | jaoi 672 | . . . . 5 ⊢ ((𝐴 ∈ (0..^(𝐵 − 1)) ∨ 𝐴 ∈ {(𝐵 − 1)}) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1))) |
22 | 14, 21 | sylbi 120 | . . . 4 ⊢ (𝐴 ∈ ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1))) |
23 | 13, 22 | syl6bi 162 | . . 3 ⊢ ((0..^𝐵) = ((0..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) → (𝐴 ∈ (0..^𝐵) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1)))) |
24 | 12, 23 | mpcom 36 | . 2 ⊢ (𝐴 ∈ (0..^𝐵) → (¬ 𝐴 < (𝐵 − 1) → 𝐴 = (𝐵 − 1))) |
25 | 24 | imp 123 | 1 ⊢ ((𝐴 ∈ (0..^𝐵) ∧ ¬ 𝐴 < (𝐵 − 1)) → 𝐴 = (𝐵 − 1)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 665 ∧ w3a 925 = wceq 1290 ∈ wcel 1439 ∪ cun 3000 {csn 3452 class class class wbr 3853 ‘cfv 5030 (class class class)co 5668 0cc0 7413 1c1 7414 + caddc 7416 < clt 7585 − cmin 7716 ℕcn 8485 ℕ0cn0 8736 ℤcz 8813 ℤ≥cuz 9082 ..^cfzo 9616 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3965 ax-pow 4017 ax-pr 4047 ax-un 4271 ax-setind 4368 ax-cnex 7499 ax-resscn 7500 ax-1cn 7501 ax-1re 7502 ax-icn 7503 ax-addcl 7504 ax-addrcl 7505 ax-mulcl 7506 ax-addcom 7508 ax-addass 7510 ax-distr 7512 ax-i2m1 7513 ax-0lt1 7514 ax-0id 7516 ax-rnegex 7517 ax-cnre 7519 ax-pre-ltirr 7520 ax-pre-ltwlin 7521 ax-pre-lttrn 7522 ax-pre-apti 7523 ax-pre-ltadd 7524 |
This theorem depends on definitions: df-bi 116 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2624 df-sbc 2844 df-csb 2937 df-dif 3004 df-un 3006 df-in 3008 df-ss 3015 df-pw 3437 df-sn 3458 df-pr 3459 df-op 3461 df-uni 3662 df-int 3697 df-iun 3740 df-br 3854 df-opab 3908 df-mpt 3909 df-id 4131 df-xp 4460 df-rel 4461 df-cnv 4462 df-co 4463 df-dm 4464 df-rn 4465 df-res 4466 df-ima 4467 df-iota 4995 df-fun 5032 df-fn 5033 df-f 5034 df-fv 5038 df-riota 5624 df-ov 5671 df-oprab 5672 df-mpt2 5673 df-1st 5927 df-2nd 5928 df-pnf 7587 df-mnf 7588 df-xr 7589 df-ltxr 7590 df-le 7591 df-sub 7718 df-neg 7719 df-inn 8486 df-n0 8737 df-z 8814 df-uz 9083 df-fz 9488 df-fzo 9617 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |