![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qltnle | GIF version |
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 8-Oct-2021.) |
Ref | Expression |
---|---|
qltnle | ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qre 9690 | . . . . 5 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℝ) | |
2 | qre 9690 | . . . . 5 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | |
3 | lenlt 8095 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
4 | 1, 2, 3 | syl2anr 290 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
5 | 4 | biimpd 144 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐵 ≤ 𝐴 → ¬ 𝐴 < 𝐵)) |
6 | 5 | con2d 625 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 → ¬ 𝐵 ≤ 𝐴)) |
7 | qtri3or 10310 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | |
8 | ax-1 6 | . . . . 5 ⊢ (𝐴 < 𝐵 → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵)) | |
9 | 8 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵))) |
10 | eqcom 2195 | . . . . . . . . 9 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
11 | eqle 8111 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 = 𝐴) → 𝐵 ≤ 𝐴) | |
12 | 10, 11 | sylan2b 287 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐵 ≤ 𝐴) |
13 | 12 | ex 115 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → (𝐴 = 𝐵 → 𝐵 ≤ 𝐴)) |
14 | 13 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → 𝐵 ≤ 𝐴)) |
15 | 1, 14 | sylan2 286 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 = 𝐵 → 𝐵 ≤ 𝐴)) |
16 | pm2.24 622 | . . . . 5 ⊢ (𝐵 ≤ 𝐴 → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵)) | |
17 | 15, 16 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 = 𝐵 → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵))) |
18 | ltle 8107 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → 𝐵 ≤ 𝐴)) | |
19 | 1, 2, 18 | syl2anr 290 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐵 < 𝐴 → 𝐵 ≤ 𝐴)) |
20 | 19, 16 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐵 < 𝐴 → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵))) |
21 | 9, 17, 20 | 3jaod 1315 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵))) |
22 | 7, 21 | mpd 13 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵)) |
23 | 6, 22 | impbid 129 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 979 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ℝcr 7871 < clt 8054 ≤ cle 8055 ℚcq 9684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-n0 9241 df-z 9318 df-q 9685 df-rp 9720 |
This theorem is referenced by: xqltnle 10336 flqlt 10352 |
Copyright terms: Public domain | W3C validator |