| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qltnle | GIF version | ||
| Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| Ref | Expression |
|---|---|
| qltnle | ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qre 9716 | . . . . 5 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℝ) | |
| 2 | qre 9716 | . . . . 5 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | |
| 3 | lenlt 8119 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
| 4 | 1, 2, 3 | syl2anr 290 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
| 5 | 4 | biimpd 144 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐵 ≤ 𝐴 → ¬ 𝐴 < 𝐵)) |
| 6 | 5 | con2d 625 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 → ¬ 𝐵 ≤ 𝐴)) |
| 7 | qtri3or 10347 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | |
| 8 | ax-1 6 | . . . . 5 ⊢ (𝐴 < 𝐵 → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵)) | |
| 9 | 8 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵))) |
| 10 | eqcom 2198 | . . . . . . . . 9 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 11 | eqle 8135 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 = 𝐴) → 𝐵 ≤ 𝐴) | |
| 12 | 10, 11 | sylan2b 287 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐵 ≤ 𝐴) |
| 13 | 12 | ex 115 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → (𝐴 = 𝐵 → 𝐵 ≤ 𝐴)) |
| 14 | 13 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → 𝐵 ≤ 𝐴)) |
| 15 | 1, 14 | sylan2 286 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 = 𝐵 → 𝐵 ≤ 𝐴)) |
| 16 | pm2.24 622 | . . . . 5 ⊢ (𝐵 ≤ 𝐴 → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵)) | |
| 17 | 15, 16 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 = 𝐵 → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵))) |
| 18 | ltle 8131 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → 𝐵 ≤ 𝐴)) | |
| 19 | 1, 2, 18 | syl2anr 290 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐵 < 𝐴 → 𝐵 ≤ 𝐴)) |
| 20 | 19, 16 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐵 < 𝐴 → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵))) |
| 21 | 9, 17, 20 | 3jaod 1315 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵))) |
| 22 | 7, 21 | mpd 13 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵)) |
| 23 | 6, 22 | impbid 129 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ℝcr 7895 < clt 8078 ≤ cle 8079 ℚcq 9710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-n0 9267 df-z 9344 df-q 9711 df-rp 9746 |
| This theorem is referenced by: xqltnle 10374 flqlt 10390 bitsfzo 12137 |
| Copyright terms: Public domain | W3C validator |