![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zltnle | GIF version |
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 14-Mar-2020.) |
Ref | Expression |
---|---|
zltnle | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9257 | . . . . 5 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
2 | zre 9257 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
3 | lenlt 8033 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
4 | 1, 2, 3 | syl2anr 290 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
5 | 4 | biimpd 144 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 → ¬ 𝐴 < 𝐵)) |
6 | 5 | con2d 624 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 → ¬ 𝐵 ≤ 𝐴)) |
7 | ztri3or 9296 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | |
8 | ax-1 6 | . . . . 5 ⊢ (𝐴 < 𝐵 → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵)) | |
9 | 8 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵))) |
10 | eqcom 2179 | . . . . . . . . 9 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
11 | eqle 8049 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 = 𝐴) → 𝐵 ≤ 𝐴) | |
12 | 10, 11 | sylan2b 287 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐵 ≤ 𝐴) |
13 | 12 | ex 115 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → (𝐴 = 𝐵 → 𝐵 ≤ 𝐴)) |
14 | 13 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → 𝐵 ≤ 𝐴)) |
15 | 1, 14 | sylan2 286 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 = 𝐵 → 𝐵 ≤ 𝐴)) |
16 | pm2.24 621 | . . . . 5 ⊢ (𝐵 ≤ 𝐴 → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵)) | |
17 | 15, 16 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 = 𝐵 → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵))) |
18 | ltle 8045 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → 𝐵 ≤ 𝐴)) | |
19 | 1, 2, 18 | syl2anr 290 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 → 𝐵 ≤ 𝐴)) |
20 | 19, 16 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵))) |
21 | 9, 17, 20 | 3jaod 1304 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵))) |
22 | 7, 21 | mpd 13 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵)) |
23 | 6, 22 | impbid 129 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 977 = wceq 1353 ∈ wcel 2148 class class class wbr 4004 ℝcr 7810 < clt 7992 ≤ cle 7993 ℤcz 9253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-0id 7919 ax-rnegex 7920 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-iota 5179 df-fun 5219 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-inn 8920 df-n0 9177 df-z 9254 |
This theorem is referenced by: znnnlt1 9301 nn0n0n1ge2b 9332 eluzdc 9610 fzdcel 10040 fzn 10042 fzpreddisj 10071 fzp1disj 10080 fzneuz 10101 fznuz 10102 uznfz 10103 fzp1nel 10104 difelfznle 10135 fzodisj 10178 exfzdc 10240 modfzo0difsn 10395 fzfig 10430 iseqf1olemqk 10494 exp3val 10522 facdiv 10718 bcval5 10743 zfz1isolemiso 10819 2zsupmax 11234 2zinfmin 11251 summodclem3 11388 fprodntrivap 11592 alzdvds 11860 fzm1ndvds 11862 fzo0dvdseq 11863 n2dvds1 11917 dvdsbnd 11957 algcvgblem 12049 prmndvdsfaclt 12156 odzdvds 12245 pcprendvds 12290 pcdvdsb 12319 pc2dvds 12329 pcmpt 12341 pockthg 12355 prmunb 12360 1arith 12365 lgsdilem2 14440 uzdcinzz 14553 |
Copyright terms: Public domain | W3C validator |