Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  zltnle GIF version

Theorem zltnle 9093
 Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zltnle ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem zltnle
StepHypRef Expression
1 zre 9051 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
2 zre 9051 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
3 lenlt 7833 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
41, 2, 3syl2anr 288 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
54biimpd 143 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴 → ¬ 𝐴 < 𝐵))
65con2d 613 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 → ¬ 𝐵𝐴))
7 ztri3or 9090 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
8 ax-1 6 . . . . 5 (𝐴 < 𝐵 → (¬ 𝐵𝐴𝐴 < 𝐵))
98a1i 9 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 → (¬ 𝐵𝐴𝐴 < 𝐵)))
10 eqcom 2139 . . . . . . . . 9 (𝐴 = 𝐵𝐵 = 𝐴)
11 eqle 7848 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐵 = 𝐴) → 𝐵𝐴)
1210, 11sylan2b 285 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐵𝐴)
1312ex 114 . . . . . . 7 (𝐵 ∈ ℝ → (𝐴 = 𝐵𝐵𝐴))
1413adantl 275 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵𝐵𝐴))
151, 14sylan2 284 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 = 𝐵𝐵𝐴))
16 pm2.24 610 . . . . 5 (𝐵𝐴 → (¬ 𝐵𝐴𝐴 < 𝐵))
1715, 16syl6 33 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 = 𝐵 → (¬ 𝐵𝐴𝐴 < 𝐵)))
18 ltle 7844 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴𝐵𝐴))
191, 2, 18syl2anr 288 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴𝐵𝐴))
2019, 16syl6 33 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 → (¬ 𝐵𝐴𝐴 < 𝐵)))
219, 17, 203jaod 1282 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) → (¬ 𝐵𝐴𝐴 < 𝐵)))
227, 21mpd 13 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 𝐵𝐴𝐴 < 𝐵))
236, 22impbid 128 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∨ w3o 961   = wceq 1331   ∈ wcel 1480   class class class wbr 3924  ℝcr 7612   < clt 7793   ≤ cle 7794  ℤcz 9047 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729 This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048 This theorem is referenced by:  znnnlt1  9095  nn0n0n1ge2b  9123  eluzdc  9397  fzdcel  9813  fzn  9815  fzpreddisj  9844  fzp1disj  9853  fzneuz  9874  fznuz  9875  uznfz  9876  fzp1nel  9877  difelfznle  9905  fzodisj  9948  exfzdc  10010  modfzo0difsn  10161  fzfig  10196  iseqf1olemqk  10260  exp3val  10288  facdiv  10477  bcval5  10502  zfz1isolemiso  10575  2zsupmax  10990  summodclem3  11142  alzdvds  11541  fzm1ndvds  11543  fzo0dvdseq  11544  n2dvds1  11598  dvdsbnd  11634  algcvgblem  11719  prmndvdsfaclt  11823  uzdcinzz  12994
 Copyright terms: Public domain W3C validator