| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zltnle | GIF version | ||
| Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| zltnle | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 9411 | . . . . 5 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
| 2 | zre 9411 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 3 | lenlt 8183 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
| 4 | 1, 2, 3 | syl2anr 290 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
| 5 | 4 | biimpd 144 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 → ¬ 𝐴 < 𝐵)) |
| 6 | 5 | con2d 625 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 → ¬ 𝐵 ≤ 𝐴)) |
| 7 | ztri3or 9450 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | |
| 8 | ax-1 6 | . . . . 5 ⊢ (𝐴 < 𝐵 → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵)) | |
| 9 | 8 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵))) |
| 10 | eqcom 2209 | . . . . . . . . 9 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 11 | eqle 8199 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 = 𝐴) → 𝐵 ≤ 𝐴) | |
| 12 | 10, 11 | sylan2b 287 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐵 ≤ 𝐴) |
| 13 | 12 | ex 115 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → (𝐴 = 𝐵 → 𝐵 ≤ 𝐴)) |
| 14 | 13 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → 𝐵 ≤ 𝐴)) |
| 15 | 1, 14 | sylan2 286 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 = 𝐵 → 𝐵 ≤ 𝐴)) |
| 16 | pm2.24 622 | . . . . 5 ⊢ (𝐵 ≤ 𝐴 → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵)) | |
| 17 | 15, 16 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 = 𝐵 → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵))) |
| 18 | ltle 8195 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → 𝐵 ≤ 𝐴)) | |
| 19 | 1, 2, 18 | syl2anr 290 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 → 𝐵 ≤ 𝐴)) |
| 20 | 19, 16 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵))) |
| 21 | 9, 17, 20 | 3jaod 1317 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵))) |
| 22 | 7, 21 | mpd 13 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 𝐵 ≤ 𝐴 → 𝐴 < 𝐵)) |
| 23 | 6, 22 | impbid 129 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 980 = wceq 1373 ∈ wcel 2178 class class class wbr 4059 ℝcr 7959 < clt 8142 ≤ cle 8143 ℤcz 9407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 |
| This theorem is referenced by: znnnlt1 9455 nnnle0 9456 nn0n0n1ge2b 9487 eluzdc 9766 fzdcel 10197 fzn 10199 fzpreddisj 10228 fzp1disj 10237 fzneuz 10258 fznuz 10259 uznfz 10260 fzp1nel 10261 difelfznle 10292 nelfzo 10309 fzodisj 10337 exfzdc 10406 modfzo0difsn 10577 fzfig 10612 iseqf1olemqk 10689 exp3val 10723 facdiv 10920 bcval5 10945 zfz1isolemiso 11021 ccatsymb 11096 swrdnd 11150 swrdsbslen 11157 swrdspsleq 11158 pfxccat3 11225 swrdccat 11226 pfxccat3a 11229 2zsupmax 11652 2zinfmin 11669 summodclem3 11806 fprodntrivap 12010 alzdvds 12280 fzm1ndvds 12282 fzo0dvdseq 12283 n2dvds1 12338 bitsfzolem 12380 bitsfzo 12381 dvdsbnd 12392 algcvgblem 12486 prmndvdsfaclt 12593 odzdvds 12683 pcprendvds 12728 pcdvdsb 12758 pc2dvds 12768 pcmpt 12781 pockthg 12795 prmunb 12800 1arith 12805 4sqlem11 12839 perfectlem2 15587 lgsdilem2 15628 lgsquadlem2 15670 uzdcinzz 15934 |
| Copyright terms: Public domain | W3C validator |