ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zltnle GIF version

Theorem zltnle 9229
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zltnle ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem zltnle
StepHypRef Expression
1 zre 9187 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
2 zre 9187 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
3 lenlt 7966 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
41, 2, 3syl2anr 288 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
54biimpd 143 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴 → ¬ 𝐴 < 𝐵))
65con2d 614 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 → ¬ 𝐵𝐴))
7 ztri3or 9226 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
8 ax-1 6 . . . . 5 (𝐴 < 𝐵 → (¬ 𝐵𝐴𝐴 < 𝐵))
98a1i 9 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 → (¬ 𝐵𝐴𝐴 < 𝐵)))
10 eqcom 2166 . . . . . . . . 9 (𝐴 = 𝐵𝐵 = 𝐴)
11 eqle 7982 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐵 = 𝐴) → 𝐵𝐴)
1210, 11sylan2b 285 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐵𝐴)
1312ex 114 . . . . . . 7 (𝐵 ∈ ℝ → (𝐴 = 𝐵𝐵𝐴))
1413adantl 275 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵𝐵𝐴))
151, 14sylan2 284 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 = 𝐵𝐵𝐴))
16 pm2.24 611 . . . . 5 (𝐵𝐴 → (¬ 𝐵𝐴𝐴 < 𝐵))
1715, 16syl6 33 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 = 𝐵 → (¬ 𝐵𝐴𝐴 < 𝐵)))
18 ltle 7978 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴𝐵𝐴))
191, 2, 18syl2anr 288 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴𝐵𝐴))
2019, 16syl6 33 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 → (¬ 𝐵𝐴𝐴 < 𝐵)))
219, 17, 203jaod 1293 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) → (¬ 𝐵𝐴𝐴 < 𝐵)))
227, 21mpd 13 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 𝐵𝐴𝐴 < 𝐵))
236, 22impbid 128 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3o 966   = wceq 1342  wcel 2135   class class class wbr 3977  cr 7744   < clt 7925  cle 7926  cz 9183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-addcom 7845  ax-addass 7847  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-0id 7853  ax-rnegex 7854  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-ltwlin 7858  ax-pre-lttrn 7859  ax-pre-ltadd 7861
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2724  df-sbc 2948  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-int 3820  df-br 3978  df-opab 4039  df-id 4266  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-iota 5148  df-fun 5185  df-fv 5191  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-pnf 7927  df-mnf 7928  df-xr 7929  df-ltxr 7930  df-le 7931  df-sub 8063  df-neg 8064  df-inn 8850  df-n0 9107  df-z 9184
This theorem is referenced by:  znnnlt1  9231  nn0n0n1ge2b  9262  eluzdc  9540  fzdcel  9966  fzn  9968  fzpreddisj  9997  fzp1disj  10006  fzneuz  10027  fznuz  10028  uznfz  10029  fzp1nel  10030  difelfznle  10061  fzodisj  10104  exfzdc  10166  modfzo0difsn  10321  fzfig  10356  iseqf1olemqk  10420  exp3val  10448  facdiv  10641  bcval5  10666  zfz1isolemiso  10742  2zsupmax  11157  2zinfmin  11174  summodclem3  11311  fprodntrivap  11515  alzdvds  11781  fzm1ndvds  11783  fzo0dvdseq  11784  n2dvds1  11838  dvdsbnd  11878  algcvgblem  11970  prmndvdsfaclt  12077  odzdvds  12166  pcprendvds  12211  pcdvdsb  12240  pc2dvds  12250  pcmpt  12262  pockthg  12276  prmunb  12281  1arith  12286  uzdcinzz  13541
  Copyright terms: Public domain W3C validator