ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotritric GIF version

Theorem sotritric 4355
Description: A trichotomy relationship, given a trichotomous order. (Contributed by Jim Kingdon, 28-Sep-2019.)
Hypotheses
Ref Expression
sotritric.or 𝑅 Or 𝐴
sotritric.tri ((𝐵𝐴𝐶𝐴) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
Assertion
Ref Expression
sotritric ((𝐵𝐴𝐶𝐴) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))

Proof of Theorem sotritric
StepHypRef Expression
1 sotritric.or . . 3 𝑅 Or 𝐴
2 sotricim 4354 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
31, 2mpan 424 . 2 ((𝐵𝐴𝐶𝐴) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
4 sotritric.tri . . 3 ((𝐵𝐴𝐶𝐴) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
5 3orass 983 . . . 4 ((𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶𝐶𝑅𝐵)))
6 ax-1 6 . . . . 5 (𝐵𝑅𝐶 → (¬ (𝐵 = 𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐶))
7 pm2.24 622 . . . . 5 ((𝐵 = 𝐶𝐶𝑅𝐵) → (¬ (𝐵 = 𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐶))
86, 7jaoi 717 . . . 4 ((𝐵𝑅𝐶 ∨ (𝐵 = 𝐶𝐶𝑅𝐵)) → (¬ (𝐵 = 𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐶))
95, 8sylbi 121 . . 3 ((𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵) → (¬ (𝐵 = 𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐶))
104, 9syl 14 . 2 ((𝐵𝐴𝐶𝐴) → (¬ (𝐵 = 𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐶))
113, 10impbid 129 1 ((𝐵𝐴𝐶𝐴) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3o 979   = wceq 1364  wcel 2164   class class class wbr 4029   Or wor 4326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-po 4327  df-iso 4328
This theorem is referenced by:  nqtric  7459
  Copyright terms: Public domain W3C validator