| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sotritric | GIF version | ||
| Description: A trichotomy relationship, given a trichotomous order. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| Ref | Expression |
|---|---|
| sotritric.or | ⊢ 𝑅 Or 𝐴 |
| sotritric.tri | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) |
| Ref | Expression |
|---|---|
| sotritric | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sotritric.or | . . 3 ⊢ 𝑅 Or 𝐴 | |
| 2 | sotricim 4358 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) | |
| 3 | 1, 2 | mpan 424 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
| 4 | sotritric.tri | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) | |
| 5 | 3orass 983 | . . . 4 ⊢ ((𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) | |
| 6 | ax-1 6 | . . . . 5 ⊢ (𝐵𝑅𝐶 → (¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → 𝐵𝑅𝐶)) | |
| 7 | pm2.24 622 | . . . . 5 ⊢ ((𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → (¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → 𝐵𝑅𝐶)) | |
| 8 | 6, 7 | jaoi 717 | . . . 4 ⊢ ((𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) → (¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → 𝐵𝑅𝐶)) |
| 9 | 5, 8 | sylbi 121 | . . 3 ⊢ ((𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → (¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → 𝐵𝑅𝐶)) |
| 10 | 4, 9 | syl 14 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → 𝐵𝑅𝐶)) |
| 11 | 3, 10 | impbid 129 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 Or wor 4330 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-po 4331 df-iso 4332 |
| This theorem is referenced by: nqtric 7466 |
| Copyright terms: Public domain | W3C validator |