![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sotritric | GIF version |
Description: A trichotomy relationship, given a trichotomous order. (Contributed by Jim Kingdon, 28-Sep-2019.) |
Ref | Expression |
---|---|
sotritric.or | ⊢ 𝑅 Or 𝐴 |
sotritric.tri | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) |
Ref | Expression |
---|---|
sotritric | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sotritric.or | . . 3 ⊢ 𝑅 Or 𝐴 | |
2 | sotricim 4203 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) | |
3 | 1, 2 | mpan 418 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
4 | sotritric.tri | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) | |
5 | 3orass 946 | . . . 4 ⊢ ((𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) | |
6 | ax-1 5 | . . . . 5 ⊢ (𝐵𝑅𝐶 → (¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → 𝐵𝑅𝐶)) | |
7 | pm2.24 593 | . . . . 5 ⊢ ((𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → (¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → 𝐵𝑅𝐶)) | |
8 | 6, 7 | jaoi 688 | . . . 4 ⊢ ((𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) → (¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → 𝐵𝑅𝐶)) |
9 | 5, 8 | sylbi 120 | . . 3 ⊢ ((𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → (¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → 𝐵𝑅𝐶)) |
10 | 4, 9 | syl 14 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → 𝐵𝑅𝐶)) |
11 | 3, 10 | impbid 128 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 680 ∨ w3o 942 = wceq 1312 ∈ wcel 1461 class class class wbr 3893 Or wor 4175 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-3or 944 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-v 2657 df-un 3039 df-sn 3497 df-pr 3498 df-op 3500 df-br 3894 df-po 4176 df-iso 4177 |
This theorem is referenced by: nqtric 7148 |
Copyright terms: Public domain | W3C validator |