| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sotritric | GIF version | ||
| Description: A trichotomy relationship, given a trichotomous order. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| Ref | Expression |
|---|---|
| sotritric.or | ⊢ 𝑅 Or 𝐴 |
| sotritric.tri | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) |
| Ref | Expression |
|---|---|
| sotritric | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sotritric.or | . . 3 ⊢ 𝑅 Or 𝐴 | |
| 2 | sotricim 4370 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) | |
| 3 | 1, 2 | mpan 424 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
| 4 | sotritric.tri | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) | |
| 5 | 3orass 984 | . . . 4 ⊢ ((𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) | |
| 6 | ax-1 6 | . . . . 5 ⊢ (𝐵𝑅𝐶 → (¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → 𝐵𝑅𝐶)) | |
| 7 | pm2.24 622 | . . . . 5 ⊢ ((𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → (¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → 𝐵𝑅𝐶)) | |
| 8 | 6, 7 | jaoi 718 | . . . 4 ⊢ ((𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) → (¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → 𝐵𝑅𝐶)) |
| 9 | 5, 8 | sylbi 121 | . . 3 ⊢ ((𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → (¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → 𝐵𝑅𝐶)) |
| 10 | 4, 9 | syl 14 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) → 𝐵𝑅𝐶)) |
| 11 | 3, 10 | impbid 129 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 ∨ w3o 980 = wceq 1373 ∈ wcel 2176 class class class wbr 4044 Or wor 4342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-po 4343 df-iso 4344 |
| This theorem is referenced by: nqtric 7512 |
| Copyright terms: Public domain | W3C validator |