ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn1suc GIF version

Theorem nn1suc 9026
Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.)
Hypotheses
Ref Expression
nn1suc.1 (𝑥 = 1 → (𝜑𝜓))
nn1suc.3 (𝑥 = (𝑦 + 1) → (𝜑𝜒))
nn1suc.4 (𝑥 = 𝐴 → (𝜑𝜃))
nn1suc.5 𝜓
nn1suc.6 (𝑦 ∈ ℕ → 𝜒)
Assertion
Ref Expression
nn1suc (𝐴 ∈ ℕ → 𝜃)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)

Proof of Theorem nn1suc
StepHypRef Expression
1 nn1suc.5 . . . . 5 𝜓
2 1ex 8038 . . . . . 6 1 ∈ V
3 nn1suc.1 . . . . . 6 (𝑥 = 1 → (𝜑𝜓))
42, 3sbcie 3024 . . . . 5 ([1 / 𝑥]𝜑𝜓)
51, 4mpbir 146 . . . 4 [1 / 𝑥]𝜑
6 1nn 9018 . . . . . . 7 1 ∈ ℕ
7 eleq1 2259 . . . . . . 7 (𝐴 = 1 → (𝐴 ∈ ℕ ↔ 1 ∈ ℕ))
86, 7mpbiri 168 . . . . . 6 (𝐴 = 1 → 𝐴 ∈ ℕ)
9 nn1suc.4 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜃))
109sbcieg 3022 . . . . . 6 (𝐴 ∈ ℕ → ([𝐴 / 𝑥]𝜑𝜃))
118, 10syl 14 . . . . 5 (𝐴 = 1 → ([𝐴 / 𝑥]𝜑𝜃))
12 dfsbcq 2991 . . . . 5 (𝐴 = 1 → ([𝐴 / 𝑥]𝜑[1 / 𝑥]𝜑))
1311, 12bitr3d 190 . . . 4 (𝐴 = 1 → (𝜃[1 / 𝑥]𝜑))
145, 13mpbiri 168 . . 3 (𝐴 = 1 → 𝜃)
1514a1i 9 . 2 (𝐴 ∈ ℕ → (𝐴 = 1 → 𝜃))
16 elisset 2777 . . . 4 ((𝐴 − 1) ∈ ℕ → ∃𝑦 𝑦 = (𝐴 − 1))
17 eleq1 2259 . . . . . 6 (𝑦 = (𝐴 − 1) → (𝑦 ∈ ℕ ↔ (𝐴 − 1) ∈ ℕ))
1817pm5.32ri 455 . . . . 5 ((𝑦 ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) ↔ ((𝐴 − 1) ∈ ℕ ∧ 𝑦 = (𝐴 − 1)))
19 nn1suc.6 . . . . . . 7 (𝑦 ∈ ℕ → 𝜒)
2019adantr 276 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) → 𝜒)
21 nnre 9014 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
22 peano2re 8179 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
23 nn1suc.3 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝜑𝜒))
2423sbcieg 3022 . . . . . . . . 9 ((𝑦 + 1) ∈ ℝ → ([(𝑦 + 1) / 𝑥]𝜑𝜒))
2521, 22, 243syl 17 . . . . . . . 8 (𝑦 ∈ ℕ → ([(𝑦 + 1) / 𝑥]𝜑𝜒))
2625adantr 276 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) → ([(𝑦 + 1) / 𝑥]𝜑𝜒))
27 oveq1 5932 . . . . . . . . 9 (𝑦 = (𝐴 − 1) → (𝑦 + 1) = ((𝐴 − 1) + 1))
2827sbceq1d 2994 . . . . . . . 8 (𝑦 = (𝐴 − 1) → ([(𝑦 + 1) / 𝑥]𝜑[((𝐴 − 1) + 1) / 𝑥]𝜑))
2928adantl 277 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) → ([(𝑦 + 1) / 𝑥]𝜑[((𝐴 − 1) + 1) / 𝑥]𝜑))
3026, 29bitr3d 190 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) → (𝜒[((𝐴 − 1) + 1) / 𝑥]𝜑))
3120, 30mpbid 147 . . . . 5 ((𝑦 ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) → [((𝐴 − 1) + 1) / 𝑥]𝜑)
3218, 31sylbir 135 . . . 4 (((𝐴 − 1) ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) → [((𝐴 − 1) + 1) / 𝑥]𝜑)
3316, 32exlimddv 1913 . . 3 ((𝐴 − 1) ∈ ℕ → [((𝐴 − 1) + 1) / 𝑥]𝜑)
34 nncn 9015 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
35 ax-1cn 7989 . . . . . 6 1 ∈ ℂ
36 npcan 8252 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴)
3734, 35, 36sylancl 413 . . . . 5 (𝐴 ∈ ℕ → ((𝐴 − 1) + 1) = 𝐴)
3837sbceq1d 2994 . . . 4 (𝐴 ∈ ℕ → ([((𝐴 − 1) + 1) / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
3938, 10bitrd 188 . . 3 (𝐴 ∈ ℕ → ([((𝐴 − 1) + 1) / 𝑥]𝜑𝜃))
4033, 39imbitrid 154 . 2 (𝐴 ∈ ℕ → ((𝐴 − 1) ∈ ℕ → 𝜃))
41 nn1m1nn 9025 . 2 (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))
4215, 40, 41mpjaod 719 1 (𝐴 ∈ ℕ → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  [wsbc 2989  (class class class)co 5925  cc 7894  cr 7895  1c1 7897   + caddc 7899  cmin 8214  cn 9007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sub 8216  df-inn 9008
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator