ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn1suc GIF version

Theorem nn1suc 9055
Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.)
Hypotheses
Ref Expression
nn1suc.1 (𝑥 = 1 → (𝜑𝜓))
nn1suc.3 (𝑥 = (𝑦 + 1) → (𝜑𝜒))
nn1suc.4 (𝑥 = 𝐴 → (𝜑𝜃))
nn1suc.5 𝜓
nn1suc.6 (𝑦 ∈ ℕ → 𝜒)
Assertion
Ref Expression
nn1suc (𝐴 ∈ ℕ → 𝜃)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)

Proof of Theorem nn1suc
StepHypRef Expression
1 nn1suc.5 . . . . 5 𝜓
2 1ex 8067 . . . . . 6 1 ∈ V
3 nn1suc.1 . . . . . 6 (𝑥 = 1 → (𝜑𝜓))
42, 3sbcie 3033 . . . . 5 ([1 / 𝑥]𝜑𝜓)
51, 4mpbir 146 . . . 4 [1 / 𝑥]𝜑
6 1nn 9047 . . . . . . 7 1 ∈ ℕ
7 eleq1 2268 . . . . . . 7 (𝐴 = 1 → (𝐴 ∈ ℕ ↔ 1 ∈ ℕ))
86, 7mpbiri 168 . . . . . 6 (𝐴 = 1 → 𝐴 ∈ ℕ)
9 nn1suc.4 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜃))
109sbcieg 3031 . . . . . 6 (𝐴 ∈ ℕ → ([𝐴 / 𝑥]𝜑𝜃))
118, 10syl 14 . . . . 5 (𝐴 = 1 → ([𝐴 / 𝑥]𝜑𝜃))
12 dfsbcq 3000 . . . . 5 (𝐴 = 1 → ([𝐴 / 𝑥]𝜑[1 / 𝑥]𝜑))
1311, 12bitr3d 190 . . . 4 (𝐴 = 1 → (𝜃[1 / 𝑥]𝜑))
145, 13mpbiri 168 . . 3 (𝐴 = 1 → 𝜃)
1514a1i 9 . 2 (𝐴 ∈ ℕ → (𝐴 = 1 → 𝜃))
16 elisset 2786 . . . 4 ((𝐴 − 1) ∈ ℕ → ∃𝑦 𝑦 = (𝐴 − 1))
17 eleq1 2268 . . . . . 6 (𝑦 = (𝐴 − 1) → (𝑦 ∈ ℕ ↔ (𝐴 − 1) ∈ ℕ))
1817pm5.32ri 455 . . . . 5 ((𝑦 ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) ↔ ((𝐴 − 1) ∈ ℕ ∧ 𝑦 = (𝐴 − 1)))
19 nn1suc.6 . . . . . . 7 (𝑦 ∈ ℕ → 𝜒)
2019adantr 276 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) → 𝜒)
21 nnre 9043 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
22 peano2re 8208 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
23 nn1suc.3 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝜑𝜒))
2423sbcieg 3031 . . . . . . . . 9 ((𝑦 + 1) ∈ ℝ → ([(𝑦 + 1) / 𝑥]𝜑𝜒))
2521, 22, 243syl 17 . . . . . . . 8 (𝑦 ∈ ℕ → ([(𝑦 + 1) / 𝑥]𝜑𝜒))
2625adantr 276 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) → ([(𝑦 + 1) / 𝑥]𝜑𝜒))
27 oveq1 5951 . . . . . . . . 9 (𝑦 = (𝐴 − 1) → (𝑦 + 1) = ((𝐴 − 1) + 1))
2827sbceq1d 3003 . . . . . . . 8 (𝑦 = (𝐴 − 1) → ([(𝑦 + 1) / 𝑥]𝜑[((𝐴 − 1) + 1) / 𝑥]𝜑))
2928adantl 277 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) → ([(𝑦 + 1) / 𝑥]𝜑[((𝐴 − 1) + 1) / 𝑥]𝜑))
3026, 29bitr3d 190 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) → (𝜒[((𝐴 − 1) + 1) / 𝑥]𝜑))
3120, 30mpbid 147 . . . . 5 ((𝑦 ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) → [((𝐴 − 1) + 1) / 𝑥]𝜑)
3218, 31sylbir 135 . . . 4 (((𝐴 − 1) ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) → [((𝐴 − 1) + 1) / 𝑥]𝜑)
3316, 32exlimddv 1922 . . 3 ((𝐴 − 1) ∈ ℕ → [((𝐴 − 1) + 1) / 𝑥]𝜑)
34 nncn 9044 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
35 ax-1cn 8018 . . . . . 6 1 ∈ ℂ
36 npcan 8281 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴)
3734, 35, 36sylancl 413 . . . . 5 (𝐴 ∈ ℕ → ((𝐴 − 1) + 1) = 𝐴)
3837sbceq1d 3003 . . . 4 (𝐴 ∈ ℕ → ([((𝐴 − 1) + 1) / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
3938, 10bitrd 188 . . 3 (𝐴 ∈ ℕ → ([((𝐴 − 1) + 1) / 𝑥]𝜑𝜃))
4033, 39imbitrid 154 . 2 (𝐴 ∈ ℕ → ((𝐴 − 1) ∈ ℕ → 𝜃))
41 nn1m1nn 9054 . 2 (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))
4215, 40, 41mpjaod 720 1 (𝐴 ∈ ℕ → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  [wsbc 2998  (class class class)co 5944  cc 7923  cr 7924  1c1 7926   + caddc 7928  cmin 8243  cn 9036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-sub 8245  df-inn 9037
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator