ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn1suc GIF version

Theorem nn1suc 8597
Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.)
Hypotheses
Ref Expression
nn1suc.1 (𝑥 = 1 → (𝜑𝜓))
nn1suc.3 (𝑥 = (𝑦 + 1) → (𝜑𝜒))
nn1suc.4 (𝑥 = 𝐴 → (𝜑𝜃))
nn1suc.5 𝜓
nn1suc.6 (𝑦 ∈ ℕ → 𝜒)
Assertion
Ref Expression
nn1suc (𝐴 ∈ ℕ → 𝜃)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)

Proof of Theorem nn1suc
StepHypRef Expression
1 nn1suc.5 . . . . 5 𝜓
2 1ex 7633 . . . . . 6 1 ∈ V
3 nn1suc.1 . . . . . 6 (𝑥 = 1 → (𝜑𝜓))
42, 3sbcie 2895 . . . . 5 ([1 / 𝑥]𝜑𝜓)
51, 4mpbir 145 . . . 4 [1 / 𝑥]𝜑
6 1nn 8589 . . . . . . 7 1 ∈ ℕ
7 eleq1 2162 . . . . . . 7 (𝐴 = 1 → (𝐴 ∈ ℕ ↔ 1 ∈ ℕ))
86, 7mpbiri 167 . . . . . 6 (𝐴 = 1 → 𝐴 ∈ ℕ)
9 nn1suc.4 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜃))
109sbcieg 2893 . . . . . 6 (𝐴 ∈ ℕ → ([𝐴 / 𝑥]𝜑𝜃))
118, 10syl 14 . . . . 5 (𝐴 = 1 → ([𝐴 / 𝑥]𝜑𝜃))
12 dfsbcq 2864 . . . . 5 (𝐴 = 1 → ([𝐴 / 𝑥]𝜑[1 / 𝑥]𝜑))
1311, 12bitr3d 189 . . . 4 (𝐴 = 1 → (𝜃[1 / 𝑥]𝜑))
145, 13mpbiri 167 . . 3 (𝐴 = 1 → 𝜃)
1514a1i 9 . 2 (𝐴 ∈ ℕ → (𝐴 = 1 → 𝜃))
16 elisset 2655 . . . 4 ((𝐴 − 1) ∈ ℕ → ∃𝑦 𝑦 = (𝐴 − 1))
17 eleq1 2162 . . . . . 6 (𝑦 = (𝐴 − 1) → (𝑦 ∈ ℕ ↔ (𝐴 − 1) ∈ ℕ))
1817pm5.32ri 446 . . . . 5 ((𝑦 ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) ↔ ((𝐴 − 1) ∈ ℕ ∧ 𝑦 = (𝐴 − 1)))
19 nn1suc.6 . . . . . . 7 (𝑦 ∈ ℕ → 𝜒)
2019adantr 272 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) → 𝜒)
21 nnre 8585 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
22 peano2re 7769 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
23 nn1suc.3 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝜑𝜒))
2423sbcieg 2893 . . . . . . . . 9 ((𝑦 + 1) ∈ ℝ → ([(𝑦 + 1) / 𝑥]𝜑𝜒))
2521, 22, 243syl 17 . . . . . . . 8 (𝑦 ∈ ℕ → ([(𝑦 + 1) / 𝑥]𝜑𝜒))
2625adantr 272 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) → ([(𝑦 + 1) / 𝑥]𝜑𝜒))
27 oveq1 5713 . . . . . . . . 9 (𝑦 = (𝐴 − 1) → (𝑦 + 1) = ((𝐴 − 1) + 1))
2827sbceq1d 2867 . . . . . . . 8 (𝑦 = (𝐴 − 1) → ([(𝑦 + 1) / 𝑥]𝜑[((𝐴 − 1) + 1) / 𝑥]𝜑))
2928adantl 273 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) → ([(𝑦 + 1) / 𝑥]𝜑[((𝐴 − 1) + 1) / 𝑥]𝜑))
3026, 29bitr3d 189 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) → (𝜒[((𝐴 − 1) + 1) / 𝑥]𝜑))
3120, 30mpbid 146 . . . . 5 ((𝑦 ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) → [((𝐴 − 1) + 1) / 𝑥]𝜑)
3218, 31sylbir 134 . . . 4 (((𝐴 − 1) ∈ ℕ ∧ 𝑦 = (𝐴 − 1)) → [((𝐴 − 1) + 1) / 𝑥]𝜑)
3316, 32exlimddv 1837 . . 3 ((𝐴 − 1) ∈ ℕ → [((𝐴 − 1) + 1) / 𝑥]𝜑)
34 nncn 8586 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
35 ax-1cn 7588 . . . . . 6 1 ∈ ℂ
36 npcan 7842 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴)
3734, 35, 36sylancl 407 . . . . 5 (𝐴 ∈ ℕ → ((𝐴 − 1) + 1) = 𝐴)
3837sbceq1d 2867 . . . 4 (𝐴 ∈ ℕ → ([((𝐴 − 1) + 1) / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
3938, 10bitrd 187 . . 3 (𝐴 ∈ ℕ → ([((𝐴 − 1) + 1) / 𝑥]𝜑𝜃))
4033, 39syl5ib 153 . 2 (𝐴 ∈ ℕ → ((𝐴 − 1) ∈ ℕ → 𝜃))
41 nn1m1nn 8596 . 2 (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))
4215, 40, 41mpjaod 679 1 (𝐴 ∈ ℕ → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1299  wcel 1448  [wsbc 2862  (class class class)co 5706  cc 7498  cr 7499  1c1 7501   + caddc 7503  cmin 7804  cn 8578
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-opab 3930  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-sub 7806  df-inn 8579
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator