![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > r19.3rmv | GIF version |
Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 6-Aug-2018.) |
Ref | Expression |
---|---|
r19.3rmv | ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1476 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | r19.3rm 3398 | 1 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∃wex 1436 ∈ wcel 1448 ∀wral 2375 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-nf 1405 df-cleq 2093 df-clel 2096 df-ral 2380 |
This theorem is referenced by: iinconstm 3769 exmidsssnc 4064 cnvpom 5017 ssfilem 6698 diffitest 6710 inffiexmid 6729 ctssexmid 6936 caucvgsrlemasr 7485 resqrexlemgt0 10632 |
Copyright terms: Public domain | W3C validator |