Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.3rmv | GIF version |
Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 6-Aug-2018.) |
Ref | Expression |
---|---|
r19.3rmv | ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | r19.3rm 3497 | 1 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∃wex 1480 ∈ wcel 2136 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-cleq 2158 df-clel 2161 df-ral 2449 |
This theorem is referenced by: iinconstm 3875 exmidsssnc 4182 cnvpom 5146 ssfilem 6841 diffitest 6853 inffiexmid 6872 ctssexmid 7114 exmidonfinlem 7149 caucvgsrlemasr 7731 resqrexlemgt0 10962 |
Copyright terms: Public domain | W3C validator |