ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.3rmv GIF version

Theorem r19.3rmv 3400
Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 6-Aug-2018.)
Assertion
Ref Expression
r19.3rmv (∃𝑦 𝑦𝐴 → (𝜑 ↔ ∀𝑥𝐴 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem r19.3rmv
StepHypRef Expression
1 nfv 1476 . 2 𝑥𝜑
21r19.3rm 3398 1 (∃𝑦 𝑦𝐴 → (𝜑 ↔ ∀𝑥𝐴 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wex 1436  wcel 1448  wral 2375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-nf 1405  df-cleq 2093  df-clel 2096  df-ral 2380
This theorem is referenced by:  iinconstm  3769  exmidsssnc  4064  cnvpom  5017  ssfilem  6698  diffitest  6710  inffiexmid  6729  ctssexmid  6936  caucvgsrlemasr  7485  resqrexlemgt0  10632
  Copyright terms: Public domain W3C validator