ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexpr GIF version

Theorem suplocexpr 7809
Description: An inhabited, bounded-above, located set of positive reals has a supremum. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
Assertion
Ref Expression
suplocexpr (𝜑 → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
Distinct variable groups:   𝑦,𝐴,𝑧,𝑥   𝜑,𝑦,𝑧,𝑥

Proof of Theorem suplocexpr
Dummy variables 𝑎 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.m . . 3 (𝜑 → ∃𝑥 𝑥𝐴)
2 suplocexpr.ub . . 3 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
3 suplocexpr.loc . . 3 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
4 breq1 4037 . . . . . 6 (𝑎 = 𝑤 → (𝑎 <Q 𝑢𝑤 <Q 𝑢))
54cbvrexv 2730 . . . . 5 (∃𝑎 (2nd𝐴)𝑎 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢)
65rabbii 2749 . . . 4 {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢} = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}
76opeq2i 3813 . . 3 (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
81, 2, 3, 7suplocexprlemex 7806 . 2 (𝜑 → ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ ∈ P)
91, 2, 3, 7suplocexprlemub 7807 . 2 (𝜑 → ∀𝑦𝐴 ¬ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦)
101, 2, 3, 7suplocexprlemlub 7808 . . 3 (𝜑 → (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧))
1110ralrimivw 2571 . 2 (𝜑 → ∀𝑦P (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧))
12 breq1 4037 . . . . . 6 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → (𝑥<P 𝑦 ↔ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦))
1312notbid 668 . . . . 5 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → (¬ 𝑥<P 𝑦 ↔ ¬ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦))
1413ralbidv 2497 . . . 4 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ↔ ∀𝑦𝐴 ¬ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦))
15 breq2 4038 . . . . . 6 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → (𝑦<P 𝑥𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩))
1615imbi1d 231 . . . . 5 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ((𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧) ↔ (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧)))
1716ralbidv 2497 . . . 4 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → (∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧) ↔ ∀𝑦P (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧)))
1814, 17anbi12d 473 . . 3 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ((∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)) ↔ (∀𝑦𝐴 ¬ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦 ∧ ∀𝑦P (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧))))
1918rspcev 2868 . 2 ((⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ ∈ P ∧ (∀𝑦𝐴 ¬ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦 ∧ ∀𝑦P (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧))) → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
208, 9, 11, 19syl12anc 1247 1 (𝜑 → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  {crab 2479  cop 3626   cuni 3840   cint 3875   class class class wbr 4034  cima 4667  1st c1st 6205  2nd c2nd 6206  Qcnq 7364   <Q cltq 7369  Pcnp 7375  <P cltp 7379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-iltp 7554
This theorem is referenced by:  suplocsrlempr  7891
  Copyright terms: Public domain W3C validator