ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexpr GIF version

Theorem suplocexpr 7749
Description: An inhabited, bounded-above, located set of positive reals has a supremum. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
Assertion
Ref Expression
suplocexpr (𝜑 → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
Distinct variable groups:   𝑦,𝐴,𝑧,𝑥   𝜑,𝑦,𝑧,𝑥

Proof of Theorem suplocexpr
Dummy variables 𝑎 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.m . . 3 (𝜑 → ∃𝑥 𝑥𝐴)
2 suplocexpr.ub . . 3 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
3 suplocexpr.loc . . 3 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
4 breq1 4021 . . . . . 6 (𝑎 = 𝑤 → (𝑎 <Q 𝑢𝑤 <Q 𝑢))
54cbvrexv 2719 . . . . 5 (∃𝑎 (2nd𝐴)𝑎 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢)
65rabbii 2738 . . . 4 {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢} = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}
76opeq2i 3797 . . 3 (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
81, 2, 3, 7suplocexprlemex 7746 . 2 (𝜑 → ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ ∈ P)
91, 2, 3, 7suplocexprlemub 7747 . 2 (𝜑 → ∀𝑦𝐴 ¬ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦)
101, 2, 3, 7suplocexprlemlub 7748 . . 3 (𝜑 → (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧))
1110ralrimivw 2564 . 2 (𝜑 → ∀𝑦P (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧))
12 breq1 4021 . . . . . 6 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → (𝑥<P 𝑦 ↔ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦))
1312notbid 668 . . . . 5 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → (¬ 𝑥<P 𝑦 ↔ ¬ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦))
1413ralbidv 2490 . . . 4 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ↔ ∀𝑦𝐴 ¬ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦))
15 breq2 4022 . . . . . 6 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → (𝑦<P 𝑥𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩))
1615imbi1d 231 . . . . 5 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ((𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧) ↔ (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧)))
1716ralbidv 2490 . . . 4 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → (∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧) ↔ ∀𝑦P (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧)))
1814, 17anbi12d 473 . . 3 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ((∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)) ↔ (∀𝑦𝐴 ¬ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦 ∧ ∀𝑦P (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧))))
1918rspcev 2856 . 2 ((⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ ∈ P ∧ (∀𝑦𝐴 ¬ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦 ∧ ∀𝑦P (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧))) → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
208, 9, 11, 19syl12anc 1247 1 (𝜑 → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709   = wceq 1364  wex 1503  wcel 2160  wral 2468  wrex 2469  {crab 2472  cop 3610   cuni 3824   cint 3859   class class class wbr 4018  cima 4644  1st c1st 6158  2nd c2nd 6159  Qcnq 7304   <Q cltq 7309  Pcnp 7315  <P cltp 7319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4304  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-ov 5895  df-oprab 5896  df-mpo 5897  df-1st 6160  df-2nd 6161  df-recs 6325  df-irdg 6390  df-1o 6436  df-2o 6437  df-oadd 6440  df-omul 6441  df-er 6554  df-ec 6556  df-qs 6560  df-ni 7328  df-pli 7329  df-mi 7330  df-lti 7331  df-plpq 7368  df-mpq 7369  df-enq 7371  df-nqqs 7372  df-plqqs 7373  df-mqqs 7374  df-1nqqs 7375  df-rq 7376  df-ltnqqs 7377  df-enq0 7448  df-nq0 7449  df-0nq0 7450  df-plq0 7451  df-mq0 7452  df-inp 7490  df-iltp 7494
This theorem is referenced by:  suplocsrlempr  7831
  Copyright terms: Public domain W3C validator