ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexpr GIF version

Theorem suplocexpr 7908
Description: An inhabited, bounded-above, located set of positive reals has a supremum. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
Assertion
Ref Expression
suplocexpr (𝜑 → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
Distinct variable groups:   𝑦,𝐴,𝑧,𝑥   𝜑,𝑦,𝑧,𝑥

Proof of Theorem suplocexpr
Dummy variables 𝑎 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.m . . 3 (𝜑 → ∃𝑥 𝑥𝐴)
2 suplocexpr.ub . . 3 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
3 suplocexpr.loc . . 3 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
4 breq1 4085 . . . . . 6 (𝑎 = 𝑤 → (𝑎 <Q 𝑢𝑤 <Q 𝑢))
54cbvrexv 2766 . . . . 5 (∃𝑎 (2nd𝐴)𝑎 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢)
65rabbii 2785 . . . 4 {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢} = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}
76opeq2i 3860 . . 3 (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
81, 2, 3, 7suplocexprlemex 7905 . 2 (𝜑 → ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ ∈ P)
91, 2, 3, 7suplocexprlemub 7906 . 2 (𝜑 → ∀𝑦𝐴 ¬ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦)
101, 2, 3, 7suplocexprlemlub 7907 . . 3 (𝜑 → (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧))
1110ralrimivw 2604 . 2 (𝜑 → ∀𝑦P (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧))
12 breq1 4085 . . . . . 6 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → (𝑥<P 𝑦 ↔ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦))
1312notbid 671 . . . . 5 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → (¬ 𝑥<P 𝑦 ↔ ¬ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦))
1413ralbidv 2530 . . . 4 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ↔ ∀𝑦𝐴 ¬ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦))
15 breq2 4086 . . . . . 6 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → (𝑦<P 𝑥𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩))
1615imbi1d 231 . . . . 5 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ((𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧) ↔ (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧)))
1716ralbidv 2530 . . . 4 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → (∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧) ↔ ∀𝑦P (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧)))
1814, 17anbi12d 473 . . 3 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ((∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)) ↔ (∀𝑦𝐴 ¬ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦 ∧ ∀𝑦P (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧))))
1918rspcev 2907 . 2 ((⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ ∈ P ∧ (∀𝑦𝐴 ¬ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦 ∧ ∀𝑦P (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧))) → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
208, 9, 11, 19syl12anc 1269 1 (𝜑 → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  {crab 2512  cop 3669   cuni 3887   cint 3922   class class class wbr 4082  cima 4721  1st c1st 6282  2nd c2nd 6283  Qcnq 7463   <Q cltq 7468  Pcnp 7474  <P cltp 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-2o 6561  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-enq0 7607  df-nq0 7608  df-0nq0 7609  df-plq0 7610  df-mq0 7611  df-inp 7649  df-iltp 7653
This theorem is referenced by:  suplocsrlempr  7990
  Copyright terms: Public domain W3C validator