ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexpr GIF version

Theorem suplocexpr 7785
Description: An inhabited, bounded-above, located set of positive reals has a supremum. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
Assertion
Ref Expression
suplocexpr (𝜑 → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
Distinct variable groups:   𝑦,𝐴,𝑧,𝑥   𝜑,𝑦,𝑧,𝑥

Proof of Theorem suplocexpr
Dummy variables 𝑎 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.m . . 3 (𝜑 → ∃𝑥 𝑥𝐴)
2 suplocexpr.ub . . 3 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
3 suplocexpr.loc . . 3 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
4 breq1 4032 . . . . . 6 (𝑎 = 𝑤 → (𝑎 <Q 𝑢𝑤 <Q 𝑢))
54cbvrexv 2727 . . . . 5 (∃𝑎 (2nd𝐴)𝑎 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢)
65rabbii 2746 . . . 4 {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢} = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}
76opeq2i 3808 . . 3 (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
81, 2, 3, 7suplocexprlemex 7782 . 2 (𝜑 → ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ ∈ P)
91, 2, 3, 7suplocexprlemub 7783 . 2 (𝜑 → ∀𝑦𝐴 ¬ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦)
101, 2, 3, 7suplocexprlemlub 7784 . . 3 (𝜑 → (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧))
1110ralrimivw 2568 . 2 (𝜑 → ∀𝑦P (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧))
12 breq1 4032 . . . . . 6 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → (𝑥<P 𝑦 ↔ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦))
1312notbid 668 . . . . 5 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → (¬ 𝑥<P 𝑦 ↔ ¬ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦))
1413ralbidv 2494 . . . 4 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ↔ ∀𝑦𝐴 ¬ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦))
15 breq2 4033 . . . . . 6 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → (𝑦<P 𝑥𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩))
1615imbi1d 231 . . . . 5 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ((𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧) ↔ (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧)))
1716ralbidv 2494 . . . 4 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → (∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧) ↔ ∀𝑦P (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧)))
1814, 17anbi12d 473 . . 3 (𝑥 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ((∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)) ↔ (∀𝑦𝐴 ¬ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦 ∧ ∀𝑦P (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧))))
1918rspcev 2864 . 2 ((⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ ∈ P ∧ (∀𝑦𝐴 ¬ ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩<P 𝑦 ∧ ∀𝑦P (𝑦<P (1st𝐴), {𝑢Q ∣ ∃𝑎 (2nd𝐴)𝑎 <Q 𝑢}⟩ → ∃𝑧𝐴 𝑦<P 𝑧))) → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
208, 9, 11, 19syl12anc 1247 1 (𝜑 → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709   = wceq 1364  wex 1503  wcel 2164  wral 2472  wrex 2473  {crab 2476  cop 3621   cuni 3835   cint 3870   class class class wbr 4029  cima 4662  1st c1st 6191  2nd c2nd 6192  Qcnq 7340   <Q cltq 7345  Pcnp 7351  <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-iltp 7530
This theorem is referenced by:  suplocsrlempr  7867
  Copyright terms: Public domain W3C validator