ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabbiia GIF version

Theorem rabbiia 2715
Description: Equivalent wff's yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.)
Hypothesis
Ref Expression
rabbiia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rabbiia {𝑥𝐴𝜑} = {𝑥𝐴𝜓}

Proof of Theorem rabbiia
StepHypRef Expression
1 rabbiia.1 . . . 4 (𝑥𝐴 → (𝜑𝜓))
21pm5.32i 451 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐴𝜓))
32abbii 2286 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑥 ∣ (𝑥𝐴𝜓)}
4 df-rab 2457 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
5 df-rab 2457 . 2 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
63, 4, 53eqtr4i 2201 1 {𝑥𝐴𝜑} = {𝑥𝐴𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  {cab 2156  {crab 2452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-rab 2457
This theorem is referenced by:  rabbii  2716  bm2.5ii  4480  fndmdifcom  5602  cauappcvgprlemladdru  7618  cauappcvgprlemladdrl  7619  cauappcvgpr  7624  caucvgprlemcl  7638  caucvgprlemladdrl  7640  caucvgpr  7644  caucvgprprlemclphr  7667  ioopos  9907  gcdcom  11928  gcdass  11970  lcmcom  12018  lcmass  12039
  Copyright terms: Public domain W3C validator