![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmtopon | GIF version |
Description: The domain of TopOn is V. (Contributed by BJ, 29-Apr-2021.) |
Ref | Expression |
---|---|
dmtopon | ⊢ dom TopOn = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vpwex 4181 | . . . 4 ⊢ 𝒫 𝑥 ∈ V | |
2 | 1 | pwex 4185 | . . 3 ⊢ 𝒫 𝒫 𝑥 ∈ V |
3 | eqcom 2179 | . . . . 5 ⊢ (𝑥 = ∪ 𝑦 ↔ ∪ 𝑦 = 𝑥) | |
4 | 3 | rabbii 2725 | . . . 4 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} = {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} |
5 | rabssab 3245 | . . . . 5 ⊢ {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} ⊆ {𝑦 ∣ ∪ 𝑦 = 𝑥} | |
6 | pwpwssunieq 3977 | . . . . 5 ⊢ {𝑦 ∣ ∪ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥 | |
7 | 5, 6 | sstri 3166 | . . . 4 ⊢ {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥 |
8 | 4, 7 | eqsstri 3189 | . . 3 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝑥 |
9 | 2, 8 | ssexi 4143 | . 2 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} ∈ V |
10 | df-topon 13596 | . 2 ⊢ TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦}) | |
11 | 9, 10 | dmmpti 5347 | 1 ⊢ dom TopOn = V |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 {cab 2163 {crab 2459 Vcvv 2739 𝒫 cpw 3577 ∪ cuni 3811 dom cdm 4628 Topctop 13582 TopOnctopon 13595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-fun 5220 df-fn 5221 df-topon 13596 |
This theorem is referenced by: fntopon 13609 |
Copyright terms: Public domain | W3C validator |