ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmtopon GIF version

Theorem dmtopon 14413
Description: The domain of TopOn is V. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
dmtopon dom TopOn = V

Proof of Theorem dmtopon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vpwex 4222 . . . 4 𝒫 𝑥 ∈ V
21pwex 4226 . . 3 𝒫 𝒫 𝑥 ∈ V
3 eqcom 2206 . . . . 5 (𝑥 = 𝑦 𝑦 = 𝑥)
43rabbii 2757 . . . 4 {𝑦 ∈ Top ∣ 𝑥 = 𝑦} = {𝑦 ∈ Top ∣ 𝑦 = 𝑥}
5 rabssab 3280 . . . . 5 {𝑦 ∈ Top ∣ 𝑦 = 𝑥} ⊆ {𝑦 𝑦 = 𝑥}
6 pwpwssunieq 4015 . . . . 5 {𝑦 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥
75, 6sstri 3201 . . . 4 {𝑦 ∈ Top ∣ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥
84, 7eqsstri 3224 . . 3 {𝑦 ∈ Top ∣ 𝑥 = 𝑦} ⊆ 𝒫 𝒫 𝑥
92, 8ssexi 4181 . 2 {𝑦 ∈ Top ∣ 𝑥 = 𝑦} ∈ V
10 df-topon 14401 . 2 TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = 𝑦})
119, 10dmmpti 5399 1 dom TopOn = V
Colors of variables: wff set class
Syntax hints:   = wceq 1372  {cab 2190  {crab 2487  Vcvv 2771  𝒫 cpw 3615   cuni 3849  dom cdm 4673  Topctop 14387  TopOnctopon 14400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-fun 5270  df-fn 5271  df-topon 14401
This theorem is referenced by:  fntopon  14414
  Copyright terms: Public domain W3C validator