![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmtopon | GIF version |
Description: The domain of TopOn is V. (Contributed by BJ, 29-Apr-2021.) |
Ref | Expression |
---|---|
dmtopon | ⊢ dom TopOn = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vpwex 4035 | . . . 4 ⊢ 𝒫 𝑥 ∈ V | |
2 | 1 | pwex 4039 | . . 3 ⊢ 𝒫 𝒫 𝑥 ∈ V |
3 | eqcom 2097 | . . . . 5 ⊢ (𝑥 = ∪ 𝑦 ↔ ∪ 𝑦 = 𝑥) | |
4 | 3 | rabbii 2619 | . . . 4 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} = {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} |
5 | rabssab 3123 | . . . . 5 ⊢ {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} ⊆ {𝑦 ∣ ∪ 𝑦 = 𝑥} | |
6 | pwpwssunieq 3839 | . . . . 5 ⊢ {𝑦 ∣ ∪ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥 | |
7 | 5, 6 | sstri 3048 | . . . 4 ⊢ {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥 |
8 | 4, 7 | eqsstri 3071 | . . 3 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝑥 |
9 | 2, 8 | ssexi 3998 | . 2 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} ∈ V |
10 | df-topon 11862 | . 2 ⊢ TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦}) | |
11 | 9, 10 | dmmpti 5177 | 1 ⊢ dom TopOn = V |
Colors of variables: wff set class |
Syntax hints: = wceq 1296 {cab 2081 {crab 2374 Vcvv 2633 𝒫 cpw 3449 ∪ cuni 3675 dom cdm 4467 Topctop 11848 TopOnctopon 11861 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-rab 2379 df-v 2635 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-fun 5051 df-fn 5052 df-topon 11862 |
This theorem is referenced by: fntopon 11874 |
Copyright terms: Public domain | W3C validator |