Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmtopon | GIF version |
Description: The domain of TopOn is V. (Contributed by BJ, 29-Apr-2021.) |
Ref | Expression |
---|---|
dmtopon | ⊢ dom TopOn = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vpwex 4165 | . . . 4 ⊢ 𝒫 𝑥 ∈ V | |
2 | 1 | pwex 4169 | . . 3 ⊢ 𝒫 𝒫 𝑥 ∈ V |
3 | eqcom 2172 | . . . . 5 ⊢ (𝑥 = ∪ 𝑦 ↔ ∪ 𝑦 = 𝑥) | |
4 | 3 | rabbii 2716 | . . . 4 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} = {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} |
5 | rabssab 3235 | . . . . 5 ⊢ {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} ⊆ {𝑦 ∣ ∪ 𝑦 = 𝑥} | |
6 | pwpwssunieq 3961 | . . . . 5 ⊢ {𝑦 ∣ ∪ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥 | |
7 | 5, 6 | sstri 3156 | . . . 4 ⊢ {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥 |
8 | 4, 7 | eqsstri 3179 | . . 3 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝑥 |
9 | 2, 8 | ssexi 4127 | . 2 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} ∈ V |
10 | df-topon 12803 | . 2 ⊢ TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦}) | |
11 | 9, 10 | dmmpti 5327 | 1 ⊢ dom TopOn = V |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 {cab 2156 {crab 2452 Vcvv 2730 𝒫 cpw 3566 ∪ cuni 3796 dom cdm 4611 Topctop 12789 TopOnctopon 12802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-fun 5200 df-fn 5201 df-topon 12803 |
This theorem is referenced by: fntopon 12816 |
Copyright terms: Public domain | W3C validator |