| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dmtopon | GIF version | ||
| Description: The domain of TopOn is V. (Contributed by BJ, 29-Apr-2021.) | 
| Ref | Expression | 
|---|---|
| dmtopon | ⊢ dom TopOn = V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vpwex 4212 | . . . 4 ⊢ 𝒫 𝑥 ∈ V | |
| 2 | 1 | pwex 4216 | . . 3 ⊢ 𝒫 𝒫 𝑥 ∈ V | 
| 3 | eqcom 2198 | . . . . 5 ⊢ (𝑥 = ∪ 𝑦 ↔ ∪ 𝑦 = 𝑥) | |
| 4 | 3 | rabbii 2749 | . . . 4 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} = {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} | 
| 5 | rabssab 3271 | . . . . 5 ⊢ {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} ⊆ {𝑦 ∣ ∪ 𝑦 = 𝑥} | |
| 6 | pwpwssunieq 4005 | . . . . 5 ⊢ {𝑦 ∣ ∪ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥 | |
| 7 | 5, 6 | sstri 3192 | . . . 4 ⊢ {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥 | 
| 8 | 4, 7 | eqsstri 3215 | . . 3 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝑥 | 
| 9 | 2, 8 | ssexi 4171 | . 2 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} ∈ V | 
| 10 | df-topon 14247 | . 2 ⊢ TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦}) | |
| 11 | 9, 10 | dmmpti 5387 | 1 ⊢ dom TopOn = V | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 {cab 2182 {crab 2479 Vcvv 2763 𝒫 cpw 3605 ∪ cuni 3839 dom cdm 4663 Topctop 14233 TopOnctopon 14246 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-fun 5260 df-fn 5261 df-topon 14247 | 
| This theorem is referenced by: fntopon 14260 | 
| Copyright terms: Public domain | W3C validator |