| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmtopon | GIF version | ||
| Description: The domain of TopOn is V. (Contributed by BJ, 29-Apr-2021.) |
| Ref | Expression |
|---|---|
| dmtopon | ⊢ dom TopOn = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vpwex 4262 | . . . 4 ⊢ 𝒫 𝑥 ∈ V | |
| 2 | 1 | pwex 4266 | . . 3 ⊢ 𝒫 𝒫 𝑥 ∈ V |
| 3 | eqcom 2231 | . . . . 5 ⊢ (𝑥 = ∪ 𝑦 ↔ ∪ 𝑦 = 𝑥) | |
| 4 | 3 | rabbii 2785 | . . . 4 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} = {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} |
| 5 | rabssab 3312 | . . . . 5 ⊢ {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} ⊆ {𝑦 ∣ ∪ 𝑦 = 𝑥} | |
| 6 | pwpwssunieq 4053 | . . . . 5 ⊢ {𝑦 ∣ ∪ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥 | |
| 7 | 5, 6 | sstri 3233 | . . . 4 ⊢ {𝑦 ∈ Top ∣ ∪ 𝑦 = 𝑥} ⊆ 𝒫 𝒫 𝑥 |
| 8 | 4, 7 | eqsstri 3256 | . . 3 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝑥 |
| 9 | 2, 8 | ssexi 4221 | . 2 ⊢ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} ∈ V |
| 10 | df-topon 14679 | . 2 ⊢ TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦}) | |
| 11 | 9, 10 | dmmpti 5452 | 1 ⊢ dom TopOn = V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 {cab 2215 {crab 2512 Vcvv 2799 𝒫 cpw 3649 ∪ cuni 3887 dom cdm 4718 Topctop 14665 TopOnctopon 14678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-fun 5319 df-fn 5320 df-topon 14679 |
| This theorem is referenced by: fntopon 14692 |
| Copyright terms: Public domain | W3C validator |