| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-rhm 13708 | 
. 2
⊢  RingHom
= (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) | 
| 2 |   | ancom 266 | 
. . . . . . 7
⊢ (((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))) | 
| 3 |   | r19.26-2 2626 | 
. . . . . . . 8
⊢
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))) | 
| 4 | 3 | anbi1i 458 | 
. . . . . . 7
⊢
((∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)) ↔ ((∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))) | 
| 5 |   | anass 401 | 
. . . . . . 7
⊢
(((∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) | 
| 6 | 2, 4, 5 | 3bitri 206 | 
. . . . . 6
⊢ (((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) | 
| 7 | 6 | rabbii 2749 | 
. . . . 5
⊢ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))} | 
| 8 |   | basfn 12736 | 
. . . . . . 7
⊢ Base Fn
V | 
| 9 |   | vex 2766 | 
. . . . . . 7
⊢ 𝑟 ∈ V | 
| 10 |   | funfvex 5575 | 
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝑟 ∈ dom
Base) → (Base‘𝑟)
∈ V) | 
| 11 | 10 | funfni 5358 | 
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝑟 ∈ V) →
(Base‘𝑟) ∈
V) | 
| 12 | 8, 9, 11 | mp2an 426 | 
. . . . . 6
⊢
(Base‘𝑟)
∈ V | 
| 13 |   | vex 2766 | 
. . . . . . 7
⊢ 𝑠 ∈ V | 
| 14 |   | funfvex 5575 | 
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝑠 ∈ dom
Base) → (Base‘𝑠)
∈ V) | 
| 15 | 14 | funfni 5358 | 
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝑠 ∈ V) →
(Base‘𝑠) ∈
V) | 
| 16 | 8, 13, 15 | mp2an 426 | 
. . . . . 6
⊢
(Base‘𝑠)
∈ V | 
| 17 |   | oveq12 5931 | 
. . . . . . . 8
⊢ ((𝑤 = (Base‘𝑠) ∧ 𝑣 = (Base‘𝑟)) → (𝑤 ↑𝑚 𝑣) = ((Base‘𝑠) ↑𝑚
(Base‘𝑟))) | 
| 18 | 17 | ancoms 268 | 
. . . . . . 7
⊢ ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (𝑤 ↑𝑚 𝑣) = ((Base‘𝑠) ↑𝑚
(Base‘𝑟))) | 
| 19 |   | raleq 2693 | 
. . . . . . . . . 10
⊢ (𝑣 = (Base‘𝑟) → (∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))) | 
| 20 | 19 | raleqbi1dv 2705 | 
. . . . . . . . 9
⊢ (𝑣 = (Base‘𝑟) → (∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))) | 
| 21 | 20 | adantr 276 | 
. . . . . . . 8
⊢ ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))) | 
| 22 | 21 | anbi2d 464 | 
. . . . . . 7
⊢ ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))) ↔ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))))) | 
| 23 | 18, 22 | rabeqbidv 2758 | 
. . . . . 6
⊢ ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → {𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) | 
| 24 | 12, 16, 23 | csbie2 3134 | 
. . . . 5
⊢
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} | 
| 25 |   | inrab 3435 | 
. . . . 5
⊢ ({𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))}) = {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))} | 
| 26 | 7, 24, 25 | 3eqtr4i 2227 | 
. . . 4
⊢
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} = ({𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))}) | 
| 27 |   | ringgrp 13557 | 
. . . . . . . 8
⊢ (𝑟 ∈ Ring → 𝑟 ∈ Grp) | 
| 28 |   | ringgrp 13557 | 
. . . . . . . 8
⊢ (𝑠 ∈ Ring → 𝑠 ∈ Grp) | 
| 29 |   | eqid 2196 | 
. . . . . . . . 9
⊢
(Base‘𝑟) =
(Base‘𝑟) | 
| 30 |   | eqid 2196 | 
. . . . . . . . 9
⊢
(Base‘𝑠) =
(Base‘𝑠) | 
| 31 |   | eqid 2196 | 
. . . . . . . . 9
⊢
(+g‘𝑟) = (+g‘𝑟) | 
| 32 |   | eqid 2196 | 
. . . . . . . . 9
⊢
(+g‘𝑠) = (+g‘𝑠) | 
| 33 | 29, 30, 31, 32 | isghm3 13374 | 
. . . . . . . 8
⊢ ((𝑟 ∈ Grp ∧ 𝑠 ∈ Grp) → (𝑓 ∈ (𝑟 GrpHom 𝑠) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))))) | 
| 34 | 27, 28, 33 | syl2an 289 | 
. . . . . . 7
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑓 ∈ (𝑟 GrpHom 𝑠) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))))) | 
| 35 | 34 | eqabdv 2325 | 
. . . . . 6
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑟 GrpHom 𝑠) = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))}) | 
| 36 |   | df-rab 2484 | 
. . . . . . 7
⊢ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))} = {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))} | 
| 37 | 16, 12 | elmap 6736 | 
. . . . . . . . 9
⊢ (𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ↔
𝑓:(Base‘𝑟)⟶(Base‘𝑠)) | 
| 38 | 37 | anbi1i 458 | 
. . . . . . . 8
⊢ ((𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))) | 
| 39 | 38 | abbii 2312 | 
. . . . . . 7
⊢ {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))} | 
| 40 | 36, 39 | eqtri 2217 | 
. . . . . 6
⊢ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))} | 
| 41 | 35, 40 | eqtr4di 2247 | 
. . . . 5
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑟 GrpHom 𝑠) = {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))}) | 
| 42 |   | eqid 2196 | 
. . . . . . . . 9
⊢
(mulGrp‘𝑟) =
(mulGrp‘𝑟) | 
| 43 | 42 | ringmgp 13558 | 
. . . . . . . 8
⊢ (𝑟 ∈ Ring →
(mulGrp‘𝑟) ∈
Mnd) | 
| 44 |   | eqid 2196 | 
. . . . . . . . 9
⊢
(mulGrp‘𝑠) =
(mulGrp‘𝑠) | 
| 45 | 44 | ringmgp 13558 | 
. . . . . . . 8
⊢ (𝑠 ∈ Ring →
(mulGrp‘𝑠) ∈
Mnd) | 
| 46 | 42, 29 | mgpbasg 13482 | 
. . . . . . . . . . 11
⊢ (𝑟 ∈ V →
(Base‘𝑟) =
(Base‘(mulGrp‘𝑟))) | 
| 47 | 46 | elv 2767 | 
. . . . . . . . . 10
⊢
(Base‘𝑟) =
(Base‘(mulGrp‘𝑟)) | 
| 48 | 44, 30 | mgpbasg 13482 | 
. . . . . . . . . . 11
⊢ (𝑠 ∈ V →
(Base‘𝑠) =
(Base‘(mulGrp‘𝑠))) | 
| 49 | 48 | elv 2767 | 
. . . . . . . . . 10
⊢
(Base‘𝑠) =
(Base‘(mulGrp‘𝑠)) | 
| 50 |   | eqid 2196 | 
. . . . . . . . . . . 12
⊢
(.r‘𝑟) = (.r‘𝑟) | 
| 51 | 42, 50 | mgpplusgg 13480 | 
. . . . . . . . . . 11
⊢ (𝑟 ∈ V →
(.r‘𝑟) =
(+g‘(mulGrp‘𝑟))) | 
| 52 | 51 | elv 2767 | 
. . . . . . . . . 10
⊢
(.r‘𝑟) = (+g‘(mulGrp‘𝑟)) | 
| 53 |   | eqid 2196 | 
. . . . . . . . . . . 12
⊢
(.r‘𝑠) = (.r‘𝑠) | 
| 54 | 44, 53 | mgpplusgg 13480 | 
. . . . . . . . . . 11
⊢ (𝑠 ∈ V →
(.r‘𝑠) =
(+g‘(mulGrp‘𝑠))) | 
| 55 | 54 | elv 2767 | 
. . . . . . . . . 10
⊢
(.r‘𝑠) = (+g‘(mulGrp‘𝑠)) | 
| 56 |   | eqid 2196 | 
. . . . . . . . . . . 12
⊢
(1r‘𝑟) = (1r‘𝑟) | 
| 57 | 42, 56 | ringidvalg 13517 | 
. . . . . . . . . . 11
⊢ (𝑟 ∈ V →
(1r‘𝑟) =
(0g‘(mulGrp‘𝑟))) | 
| 58 | 57 | elv 2767 | 
. . . . . . . . . 10
⊢
(1r‘𝑟) = (0g‘(mulGrp‘𝑟)) | 
| 59 |   | eqid 2196 | 
. . . . . . . . . . . 12
⊢
(1r‘𝑠) = (1r‘𝑠) | 
| 60 | 44, 59 | ringidvalg 13517 | 
. . . . . . . . . . 11
⊢ (𝑠 ∈ V →
(1r‘𝑠) =
(0g‘(mulGrp‘𝑠))) | 
| 61 | 60 | elv 2767 | 
. . . . . . . . . 10
⊢
(1r‘𝑠) = (0g‘(mulGrp‘𝑠)) | 
| 62 | 47, 49, 52, 55, 58, 61 | ismhm 13093 | 
. . . . . . . . 9
⊢ (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (((mulGrp‘𝑟) ∈ Mnd ∧
(mulGrp‘𝑠) ∈
Mnd) ∧ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) | 
| 63 | 62 | baib 920 | 
. . . . . . . 8
⊢
(((mulGrp‘𝑟)
∈ Mnd ∧ (mulGrp‘𝑠) ∈ Mnd) → (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) | 
| 64 | 43, 45, 63 | syl2an 289 | 
. . . . . . 7
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) | 
| 65 | 64 | eqabdv 2325 | 
. . . . . 6
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) →
((mulGrp‘𝑟) MndHom
(mulGrp‘𝑠)) = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))}) | 
| 66 |   | df-rab 2484 | 
. . . . . . 7
⊢ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))} = {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))} | 
| 67 | 37 | anbi1i 458 | 
. . . . . . . . 9
⊢ ((𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) | 
| 68 |   | 3anass 984 | 
. . . . . . . . 9
⊢ ((𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) | 
| 69 | 67, 68 | bitr4i 187 | 
. . . . . . . 8
⊢ ((𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))) | 
| 70 | 69 | abbii 2312 | 
. . . . . . 7
⊢ {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))} | 
| 71 | 66, 70 | eqtri 2217 | 
. . . . . 6
⊢ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))} | 
| 72 | 65, 71 | eqtr4di 2247 | 
. . . . 5
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) →
((mulGrp‘𝑟) MndHom
(mulGrp‘𝑠)) = {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))}) | 
| 73 | 41, 72 | ineq12d 3365 | 
. . . 4
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))) = ({𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))})) | 
| 74 | 26, 73 | eqtr4id 2248 | 
. . 3
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) →
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} = ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) | 
| 75 | 74 | mpoeq3ia 5987 | 
. 2
⊢ (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) | 
| 76 | 1, 75 | eqtri 2217 | 
1
⊢  RingHom
= (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) |