Step | Hyp | Ref
| Expression |
1 | | df-rhm 13519 |
. 2
⊢ RingHom
= (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) |
2 | | ancom 266 |
. . . . . . 7
⊢ (((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))) |
3 | | r19.26-2 2619 |
. . . . . . . 8
⊢
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))) |
4 | 3 | anbi1i 458 |
. . . . . . 7
⊢
((∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)) ↔ ((∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))) |
5 | | anass 401 |
. . . . . . 7
⊢
(((∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
6 | 2, 4, 5 | 3bitri 206 |
. . . . . 6
⊢ (((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))) ↔ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
7 | 6 | rabbii 2738 |
. . . . 5
⊢ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))} |
8 | | basfn 12573 |
. . . . . . 7
⊢ Base Fn
V |
9 | | vex 2755 |
. . . . . . 7
⊢ 𝑟 ∈ V |
10 | | funfvex 5551 |
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝑟 ∈ dom
Base) → (Base‘𝑟)
∈ V) |
11 | 10 | funfni 5335 |
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝑟 ∈ V) →
(Base‘𝑟) ∈
V) |
12 | 8, 9, 11 | mp2an 426 |
. . . . . 6
⊢
(Base‘𝑟)
∈ V |
13 | | vex 2755 |
. . . . . . 7
⊢ 𝑠 ∈ V |
14 | | funfvex 5551 |
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝑠 ∈ dom
Base) → (Base‘𝑠)
∈ V) |
15 | 14 | funfni 5335 |
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝑠 ∈ V) →
(Base‘𝑠) ∈
V) |
16 | 8, 13, 15 | mp2an 426 |
. . . . . 6
⊢
(Base‘𝑠)
∈ V |
17 | | oveq12 5906 |
. . . . . . . 8
⊢ ((𝑤 = (Base‘𝑠) ∧ 𝑣 = (Base‘𝑟)) → (𝑤 ↑𝑚 𝑣) = ((Base‘𝑠) ↑𝑚
(Base‘𝑟))) |
18 | 17 | ancoms 268 |
. . . . . . 7
⊢ ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (𝑤 ↑𝑚 𝑣) = ((Base‘𝑠) ↑𝑚
(Base‘𝑟))) |
19 | | raleq 2686 |
. . . . . . . . . 10
⊢ (𝑣 = (Base‘𝑟) → (∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))) |
20 | 19 | raleqbi1dv 2694 |
. . . . . . . . 9
⊢ (𝑣 = (Base‘𝑟) → (∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))) |
21 | 20 | adantr 276 |
. . . . . . . 8
⊢ ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))) |
22 | 21 | anbi2d 464 |
. . . . . . 7
⊢ ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → (((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))) ↔ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))))) |
23 | 18, 22 | rabeqbidv 2747 |
. . . . . 6
⊢ ((𝑣 = (Base‘𝑟) ∧ 𝑤 = (Base‘𝑠)) → {𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) |
24 | 12, 16, 23 | csbie2 3121 |
. . . . 5
⊢
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} = {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} |
25 | | inrab 3422 |
. . . . 5
⊢ ({𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))}) = {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))} |
26 | 7, 24, 25 | 3eqtr4i 2220 |
. . . 4
⊢
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} = ({𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑𝑚 (Base‘𝑟)) ∣ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))}) |
27 | | ringgrp 13372 |
. . . . . . . 8
⊢ (𝑟 ∈ Ring → 𝑟 ∈ Grp) |
28 | | ringgrp 13372 |
. . . . . . . 8
⊢ (𝑠 ∈ Ring → 𝑠 ∈ Grp) |
29 | | eqid 2189 |
. . . . . . . . 9
⊢
(Base‘𝑟) =
(Base‘𝑟) |
30 | | eqid 2189 |
. . . . . . . . 9
⊢
(Base‘𝑠) =
(Base‘𝑠) |
31 | | eqid 2189 |
. . . . . . . . 9
⊢
(+g‘𝑟) = (+g‘𝑟) |
32 | | eqid 2189 |
. . . . . . . . 9
⊢
(+g‘𝑠) = (+g‘𝑠) |
33 | 29, 30, 31, 32 | isghm3 13200 |
. . . . . . . 8
⊢ ((𝑟 ∈ Grp ∧ 𝑠 ∈ Grp) → (𝑓 ∈ (𝑟 GrpHom 𝑠) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))))) |
34 | 27, 28, 33 | syl2an 289 |
. . . . . . 7
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑓 ∈ (𝑟 GrpHom 𝑠) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))))) |
35 | 34 | eqabdv 2318 |
. . . . . 6
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑟 GrpHom 𝑠) = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))}) |
36 | | df-rab 2477 |
. . . . . . 7
⊢ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))} = {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))} |
37 | 16, 12 | elmap 6704 |
. . . . . . . . 9
⊢ (𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ↔
𝑓:(Base‘𝑟)⟶(Base‘𝑠)) |
38 | 37 | anbi1i 458 |
. . . . . . . 8
⊢ ((𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))) |
39 | 38 | abbii 2305 |
. . . . . . 7
⊢ {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))} |
40 | 36, 39 | eqtri 2210 |
. . . . . 6
⊢ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)))} |
41 | 35, 40 | eqtr4di 2240 |
. . . . 5
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑟 GrpHom 𝑠) = {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))}) |
42 | | eqid 2189 |
. . . . . . . . 9
⊢
(mulGrp‘𝑟) =
(mulGrp‘𝑟) |
43 | 42 | ringmgp 13373 |
. . . . . . . 8
⊢ (𝑟 ∈ Ring →
(mulGrp‘𝑟) ∈
Mnd) |
44 | | eqid 2189 |
. . . . . . . . 9
⊢
(mulGrp‘𝑠) =
(mulGrp‘𝑠) |
45 | 44 | ringmgp 13373 |
. . . . . . . 8
⊢ (𝑠 ∈ Ring →
(mulGrp‘𝑠) ∈
Mnd) |
46 | 42, 29 | mgpbasg 13297 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ V →
(Base‘𝑟) =
(Base‘(mulGrp‘𝑟))) |
47 | 46 | elv 2756 |
. . . . . . . . . 10
⊢
(Base‘𝑟) =
(Base‘(mulGrp‘𝑟)) |
48 | 44, 30 | mgpbasg 13297 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ V →
(Base‘𝑠) =
(Base‘(mulGrp‘𝑠))) |
49 | 48 | elv 2756 |
. . . . . . . . . 10
⊢
(Base‘𝑠) =
(Base‘(mulGrp‘𝑠)) |
50 | | eqid 2189 |
. . . . . . . . . . . 12
⊢
(.r‘𝑟) = (.r‘𝑟) |
51 | 42, 50 | mgpplusgg 13295 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ V →
(.r‘𝑟) =
(+g‘(mulGrp‘𝑟))) |
52 | 51 | elv 2756 |
. . . . . . . . . 10
⊢
(.r‘𝑟) = (+g‘(mulGrp‘𝑟)) |
53 | | eqid 2189 |
. . . . . . . . . . . 12
⊢
(.r‘𝑠) = (.r‘𝑠) |
54 | 44, 53 | mgpplusgg 13295 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ V →
(.r‘𝑠) =
(+g‘(mulGrp‘𝑠))) |
55 | 54 | elv 2756 |
. . . . . . . . . 10
⊢
(.r‘𝑠) = (+g‘(mulGrp‘𝑠)) |
56 | | eqid 2189 |
. . . . . . . . . . . 12
⊢
(1r‘𝑟) = (1r‘𝑟) |
57 | 42, 56 | ringidvalg 13332 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ V →
(1r‘𝑟) =
(0g‘(mulGrp‘𝑟))) |
58 | 57 | elv 2756 |
. . . . . . . . . 10
⊢
(1r‘𝑟) = (0g‘(mulGrp‘𝑟)) |
59 | | eqid 2189 |
. . . . . . . . . . . 12
⊢
(1r‘𝑠) = (1r‘𝑠) |
60 | 44, 59 | ringidvalg 13332 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ V →
(1r‘𝑠) =
(0g‘(mulGrp‘𝑠))) |
61 | 60 | elv 2756 |
. . . . . . . . . 10
⊢
(1r‘𝑠) = (0g‘(mulGrp‘𝑠)) |
62 | 47, 49, 52, 55, 58, 61 | ismhm 12928 |
. . . . . . . . 9
⊢ (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (((mulGrp‘𝑟) ∈ Mnd ∧
(mulGrp‘𝑠) ∈
Mnd) ∧ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
63 | 62 | baib 920 |
. . . . . . . 8
⊢
(((mulGrp‘𝑟)
∈ Mnd ∧ (mulGrp‘𝑠) ∈ Mnd) → (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
64 | 43, 45, 63 | syl2an 289 |
. . . . . . 7
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → (𝑓 ∈ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
65 | 64 | eqabdv 2318 |
. . . . . 6
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) →
((mulGrp‘𝑟) MndHom
(mulGrp‘𝑠)) = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))}) |
66 | | df-rab 2477 |
. . . . . . 7
⊢ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))} = {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))} |
67 | 37 | anbi1i 458 |
. . . . . . . . 9
⊢ ((𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
68 | | 3anass 984 |
. . . . . . . . 9
⊢ ((𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))) |
69 | 67, 68 | bitr4i 187 |
. . . . . . . 8
⊢ ((𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))) ↔ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))) |
70 | 69 | abbii 2305 |
. . . . . . 7
⊢ {𝑓 ∣ (𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∧
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠)))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))} |
71 | 66, 70 | eqtri 2210 |
. . . . . 6
⊢ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))} = {𝑓 ∣ (𝑓:(Base‘𝑟)⟶(Base‘𝑠) ∧ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))} |
72 | 65, 71 | eqtr4di 2240 |
. . . . 5
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) →
((mulGrp‘𝑟) MndHom
(mulGrp‘𝑠)) = {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))}) |
73 | 41, 72 | ineq12d 3352 |
. . . 4
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) → ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))) = ({𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦))} ∩ {𝑓 ∈ ((Base‘𝑠) ↑𝑚
(Base‘𝑟)) ∣
(∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)(𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(1r‘𝑟)) = (1r‘𝑠))})) |
74 | 26, 73 | eqtr4id 2241 |
. . 3
⊢ ((𝑟 ∈ Ring ∧ 𝑠 ∈ Ring) →
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} = ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) |
75 | 74 | mpoeq3ia 5962 |
. 2
⊢ (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) |
76 | 1, 75 | eqtri 2210 |
1
⊢ RingHom
= (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) |