Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabbidv | GIF version |
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.) |
Ref | Expression |
---|---|
rabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rabbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | adantr 274 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
3 | 2 | rabbidva 2713 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 {crab 2447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-ral 2448 df-rab 2452 |
This theorem is referenced by: rabeqbidv 2720 difeq2 3233 seex 4312 mptiniseg 5097 supeq1 6947 supeq2 6950 supeq3 6951 cardcl 7133 isnumi 7134 cardval3ex 7137 carden2bex 7141 genpdflem 7444 genipv 7446 genpelxp 7448 addcomprg 7515 mulcomprg 7517 uzval 9464 ixxval 9828 fzval 9942 hashinfom 10687 hashennn 10689 shftfn 10762 gcdval 11888 lcmval 11991 isprm 12037 odzval 12169 pceulem 12222 pceu 12223 pcval 12224 pczpre 12225 pcdiv 12230 istopon 12611 toponsspwpwg 12620 clsval 12711 neival 12743 cnpval 12798 blvalps 12988 blval 12989 limccl 13228 ellimc3apf 13229 eldvap 13251 |
Copyright terms: Public domain | W3C validator |