ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabbidv GIF version

Theorem rabbidv 2788
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.)
Hypothesis
Ref Expression
rabbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rabbidv (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem rabbidv
StepHypRef Expression
1 rabbidv.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 276 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
32rabbidva 2787 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wcel 2200  {crab 2512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-ral 2513  df-rab 2517
This theorem is referenced by:  rabeqbidv  2794  difeq2  3316  seex  4426  mptiniseg  5223  elovmporab  6211  supeq1  7161  supeq2  7164  supeq3  7165  cardcl  7361  isnumi  7362  cardval3ex  7365  carden2bex  7370  genpdflem  7702  genipv  7704  genpelxp  7706  addcomprg  7773  mulcomprg  7775  uzval  9732  ixxval  10100  fzval  10214  hashinfom  11008  hashennn  11010  shftfn  11343  bitsfval  12461  gcdval  12488  lcmval  12593  isprm  12639  odzval  12772  pceulem  12825  pceu  12826  pcval  12827  pczpre  12828  pcdiv  12833  lspval  14362  istopon  14695  toponsspwpwg  14704  clsval  14793  neival  14825  cnpval  14880  blvalps  15070  blval  15071  limccl  15341  ellimc3apf  15342  eldvap  15364  sgmval  15665
  Copyright terms: Public domain W3C validator