| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabbidv | GIF version | ||
| Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| rabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rabbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | rabbidva 2761 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 {crab 2489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-ral 2490 df-rab 2494 |
| This theorem is referenced by: rabeqbidv 2768 difeq2 3286 seex 4386 mptiniseg 5182 elovmporab 6153 supeq1 7095 supeq2 7098 supeq3 7099 cardcl 7295 isnumi 7296 cardval3ex 7299 carden2bex 7304 genpdflem 7627 genipv 7629 genpelxp 7631 addcomprg 7698 mulcomprg 7700 uzval 9657 ixxval 10025 fzval 10139 hashinfom 10930 hashennn 10932 shftfn 11179 bitsfval 12297 gcdval 12324 lcmval 12429 isprm 12475 odzval 12608 pceulem 12661 pceu 12662 pcval 12663 pczpre 12664 pcdiv 12669 lspval 14196 istopon 14529 toponsspwpwg 14538 clsval 14627 neival 14659 cnpval 14714 blvalps 14904 blval 14905 limccl 15175 ellimc3apf 15176 eldvap 15198 sgmval 15499 |
| Copyright terms: Public domain | W3C validator |