| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabbidv | GIF version | ||
| Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| rabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rabbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | rabbidva 2767 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 ∈ wcel 2180 {crab 2492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-ral 2493 df-rab 2497 |
| This theorem is referenced by: rabeqbidv 2774 difeq2 3296 seex 4403 mptiniseg 5199 elovmporab 6176 supeq1 7121 supeq2 7124 supeq3 7125 cardcl 7321 isnumi 7322 cardval3ex 7325 carden2bex 7330 genpdflem 7662 genipv 7664 genpelxp 7666 addcomprg 7733 mulcomprg 7735 uzval 9692 ixxval 10060 fzval 10174 hashinfom 10967 hashennn 10969 shftfn 11301 bitsfval 12419 gcdval 12446 lcmval 12551 isprm 12597 odzval 12730 pceulem 12783 pceu 12784 pcval 12785 pczpre 12786 pcdiv 12791 lspval 14319 istopon 14652 toponsspwpwg 14661 clsval 14750 neival 14782 cnpval 14837 blvalps 15027 blval 15028 limccl 15298 ellimc3apf 15299 eldvap 15321 sgmval 15622 |
| Copyright terms: Public domain | W3C validator |