| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabbidv | GIF version | ||
| Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| rabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rabbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | rabbidva 2787 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {crab 2512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-ral 2513 df-rab 2517 |
| This theorem is referenced by: rabeqbidv 2794 difeq2 3316 seex 4426 mptiniseg 5223 elovmporab 6211 supeq1 7161 supeq2 7164 supeq3 7165 cardcl 7361 isnumi 7362 cardval3ex 7365 carden2bex 7370 genpdflem 7702 genipv 7704 genpelxp 7706 addcomprg 7773 mulcomprg 7775 uzval 9732 ixxval 10100 fzval 10214 hashinfom 11008 hashennn 11010 shftfn 11343 bitsfval 12461 gcdval 12488 lcmval 12593 isprm 12639 odzval 12772 pceulem 12825 pceu 12826 pcval 12827 pczpre 12828 pcdiv 12833 lspval 14362 istopon 14695 toponsspwpwg 14704 clsval 14793 neival 14825 cnpval 14880 blvalps 15070 blval 15071 limccl 15341 ellimc3apf 15342 eldvap 15364 sgmval 15665 |
| Copyright terms: Public domain | W3C validator |