ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabbidv GIF version

Theorem rabbidv 2752
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.)
Hypothesis
Ref Expression
rabbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rabbidv (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem rabbidv
StepHypRef Expression
1 rabbidv.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 276 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
32rabbidva 2751 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  {crab 2479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-ral 2480  df-rab 2484
This theorem is referenced by:  rabeqbidv  2758  difeq2  3276  seex  4371  mptiniseg  5165  elovmporab  6127  supeq1  7061  supeq2  7064  supeq3  7065  cardcl  7259  isnumi  7260  cardval3ex  7263  carden2bex  7268  genpdflem  7591  genipv  7593  genpelxp  7595  addcomprg  7662  mulcomprg  7664  uzval  9620  ixxval  9988  fzval  10102  hashinfom  10887  hashennn  10889  shftfn  11006  bitsfval  12124  gcdval  12151  lcmval  12256  isprm  12302  odzval  12435  pceulem  12488  pceu  12489  pcval  12490  pczpre  12491  pcdiv  12496  lspval  14022  istopon  14333  toponsspwpwg  14342  clsval  14431  neival  14463  cnpval  14518  blvalps  14708  blval  14709  limccl  14979  ellimc3apf  14980  eldvap  15002  sgmval  15303
  Copyright terms: Public domain W3C validator