| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabbidv | GIF version | ||
| Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| rabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rabbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | rabbidva 2751 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {crab 2479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-ral 2480 df-rab 2484 |
| This theorem is referenced by: rabeqbidv 2758 difeq2 3276 seex 4371 mptiniseg 5165 elovmporab 6127 supeq1 7061 supeq2 7064 supeq3 7065 cardcl 7259 isnumi 7260 cardval3ex 7263 carden2bex 7268 genpdflem 7591 genipv 7593 genpelxp 7595 addcomprg 7662 mulcomprg 7664 uzval 9620 ixxval 9988 fzval 10102 hashinfom 10887 hashennn 10889 shftfn 11006 bitsfval 12124 gcdval 12151 lcmval 12256 isprm 12302 odzval 12435 pceulem 12488 pceu 12489 pcval 12490 pczpre 12491 pcdiv 12496 lspval 14022 istopon 14333 toponsspwpwg 14342 clsval 14431 neival 14463 cnpval 14518 blvalps 14708 blval 14709 limccl 14979 ellimc3apf 14980 eldvap 15002 sgmval 15303 |
| Copyright terms: Public domain | W3C validator |