Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabbidv | GIF version |
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.) |
Ref | Expression |
---|---|
rabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rabbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | adantr 274 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
3 | 2 | rabbidva 2697 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1332 ∈ wcel 2125 {crab 2436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-11 1483 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-ral 2437 df-rab 2441 |
This theorem is referenced by: rabeqbidv 2704 difeq2 3215 seex 4290 mptiniseg 5073 supeq1 6918 supeq2 6921 supeq3 6922 cardcl 7095 isnumi 7096 cardval3ex 7099 carden2bex 7103 genpdflem 7406 genipv 7408 genpelxp 7410 addcomprg 7477 mulcomprg 7479 uzval 9420 ixxval 9778 fzval 9892 hashinfom 10629 hashennn 10631 shftfn 10701 gcdval 11815 lcmval 11912 isprm 11958 istopon 12358 toponsspwpwg 12367 clsval 12458 neival 12490 cnpval 12545 blvalps 12735 blval 12736 limccl 12975 ellimc3apf 12976 eldvap 12998 |
Copyright terms: Public domain | W3C validator |