![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabbidv | GIF version |
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.) |
Ref | Expression |
---|---|
rabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rabbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
3 | 2 | rabbidva 2748 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {crab 2476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-ral 2477 df-rab 2481 |
This theorem is referenced by: rabeqbidv 2755 difeq2 3271 seex 4366 mptiniseg 5160 elovmporab 6118 supeq1 7045 supeq2 7048 supeq3 7049 cardcl 7241 isnumi 7242 cardval3ex 7245 carden2bex 7249 genpdflem 7567 genipv 7569 genpelxp 7571 addcomprg 7638 mulcomprg 7640 uzval 9594 ixxval 9962 fzval 10076 hashinfom 10849 hashennn 10851 shftfn 10968 gcdval 12096 lcmval 12201 isprm 12247 odzval 12379 pceulem 12432 pceu 12433 pcval 12434 pczpre 12435 pcdiv 12440 lspval 13886 istopon 14181 toponsspwpwg 14190 clsval 14279 neival 14311 cnpval 14366 blvalps 14556 blval 14557 limccl 14813 ellimc3apf 14814 eldvap 14836 |
Copyright terms: Public domain | W3C validator |