ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabbidv GIF version

Theorem rabbidv 2762
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.)
Hypothesis
Ref Expression
rabbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rabbidv (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem rabbidv
StepHypRef Expression
1 rabbidv.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 276 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
32rabbidva 2761 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2177  {crab 2489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-ral 2490  df-rab 2494
This theorem is referenced by:  rabeqbidv  2768  difeq2  3286  seex  4386  mptiniseg  5182  elovmporab  6153  supeq1  7095  supeq2  7098  supeq3  7099  cardcl  7295  isnumi  7296  cardval3ex  7299  carden2bex  7304  genpdflem  7627  genipv  7629  genpelxp  7631  addcomprg  7698  mulcomprg  7700  uzval  9657  ixxval  10025  fzval  10139  hashinfom  10930  hashennn  10932  shftfn  11179  bitsfval  12297  gcdval  12324  lcmval  12429  isprm  12475  odzval  12608  pceulem  12661  pceu  12662  pcval  12663  pczpre  12664  pcdiv  12669  lspval  14196  istopon  14529  toponsspwpwg  14538  clsval  14627  neival  14659  cnpval  14714  blvalps  14904  blval  14905  limccl  15175  ellimc3apf  15176  eldvap  15198  sgmval  15499
  Copyright terms: Public domain W3C validator