| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabbidv | GIF version | ||
| Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| rabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rabbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | rabbidva 2751 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {crab 2479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-ral 2480 df-rab 2484 |
| This theorem is referenced by: rabeqbidv 2758 difeq2 3276 seex 4371 mptiniseg 5165 elovmporab 6127 supeq1 7061 supeq2 7064 supeq3 7065 cardcl 7261 isnumi 7262 cardval3ex 7265 carden2bex 7270 genpdflem 7593 genipv 7595 genpelxp 7597 addcomprg 7664 mulcomprg 7666 uzval 9622 ixxval 9990 fzval 10104 hashinfom 10889 hashennn 10891 shftfn 11008 bitsfval 12126 gcdval 12153 lcmval 12258 isprm 12304 odzval 12437 pceulem 12490 pceu 12491 pcval 12492 pczpre 12493 pcdiv 12498 lspval 14024 istopon 14335 toponsspwpwg 14344 clsval 14433 neival 14465 cnpval 14520 blvalps 14710 blval 14711 limccl 14981 ellimc3apf 14982 eldvap 15004 sgmval 15305 |
| Copyright terms: Public domain | W3C validator |