ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqi GIF version

Theorem rabeqi 2769
Description: Equality theorem for restricted class abstractions. Inference form of rabeq 2768. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
rabeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
rabeqi {𝑥𝐴𝜑} = {𝑥𝐵𝜑}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabeqi
StepHypRef Expression
1 nfcv 2350 . 2 𝑥𝐴
2 nfcv 2350 . 2 𝑥𝐵
3 rabeqi.1 . 2 𝐴 = 𝐵
41, 2, 3rabeqif 2767 1 {𝑥𝐴𝜑} = {𝑥𝐵𝜑}
Colors of variables: wff set class
Syntax hints:   = wceq 1373  {crab 2490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rab 2495
This theorem is referenced by:  bitsfzolem  12380  lcmval  12500  lcmcllem  12504  lcmledvds  12507  phimullem  12662  odzcllem  12680  odzdvds  12683  4sqlem13m  12841  4sqlem14  12842  4sqlem17  12845  4sqlem18  12846  pw0ss  15794
  Copyright terms: Public domain W3C validator