ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqi GIF version

Theorem rabeqi 2745
Description: Equality theorem for restricted class abstractions. Inference form of rabeq 2744. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
rabeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
rabeqi {𝑥𝐴𝜑} = {𝑥𝐵𝜑}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabeqi
StepHypRef Expression
1 nfcv 2332 . 2 𝑥𝐴
2 nfcv 2332 . 2 𝑥𝐵
3 rabeqi.1 . 2 𝐴 = 𝐵
41, 2, 3rabeqif 2743 1 {𝑥𝐴𝜑} = {𝑥𝐵𝜑}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  {crab 2472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rab 2477
This theorem is referenced by:  lcmval  12095  lcmcllem  12099  lcmledvds  12102  phimullem  12257  odzcllem  12274  odzdvds  12277  4sqlem13m  12435  4sqlem14  12436  4sqlem17  12439  4sqlem18  12440
  Copyright terms: Public domain W3C validator