| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabeqi | GIF version | ||
| Description: Equality theorem for restricted class abstractions. Inference form of rabeq 2764. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| rabeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rabeqi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2348 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | rabeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 4 | 1, 2, 3 | rabeqif 2763 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 {crab 2488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 |
| This theorem is referenced by: bitsfzolem 12265 lcmval 12385 lcmcllem 12389 lcmledvds 12392 phimullem 12547 odzcllem 12565 odzdvds 12568 4sqlem13m 12726 4sqlem14 12727 4sqlem17 12730 4sqlem18 12731 |
| Copyright terms: Public domain | W3C validator |