| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabeqi | GIF version | ||
| Description: Equality theorem for restricted class abstractions. Inference form of rabeq 2791. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| rabeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rabeqi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2372 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | rabeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 4 | 1, 2, 3 | rabeqif 2790 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 {crab 2512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 |
| This theorem is referenced by: bitsfzolem 12460 lcmval 12580 lcmcllem 12584 lcmledvds 12587 phimullem 12742 odzcllem 12760 odzdvds 12763 4sqlem13m 12921 4sqlem14 12922 4sqlem17 12925 4sqlem18 12926 pw0ss 15877 |
| Copyright terms: Public domain | W3C validator |