| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabeqi | GIF version | ||
| Description: Equality theorem for restricted class abstractions. Inference form of rabeq 2768. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| rabeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rabeqi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2350 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2350 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | rabeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 4 | 1, 2, 3 | rabeqif 2767 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 {crab 2490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 |
| This theorem is referenced by: bitsfzolem 12380 lcmval 12500 lcmcllem 12504 lcmledvds 12507 phimullem 12662 odzcllem 12680 odzdvds 12683 4sqlem13m 12841 4sqlem14 12842 4sqlem17 12845 4sqlem18 12846 pw0ss 15794 |
| Copyright terms: Public domain | W3C validator |