| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabeqi | GIF version | ||
| Description: Equality theorem for restricted class abstractions. Inference form of rabeq 2763. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| rabeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rabeqi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2347 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2347 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | rabeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 4 | 1, 2, 3 | rabeqif 2762 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 {crab 2487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rab 2492 |
| This theorem is referenced by: bitsfzolem 12236 lcmval 12356 lcmcllem 12360 lcmledvds 12363 phimullem 12518 odzcllem 12536 odzdvds 12539 4sqlem13m 12697 4sqlem14 12698 4sqlem17 12701 4sqlem18 12702 |
| Copyright terms: Public domain | W3C validator |