ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqi GIF version

Theorem rabeqi 2731
Description: Equality theorem for restricted class abstractions. Inference form of rabeq 2730. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
rabeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
rabeqi {𝑥𝐴𝜑} = {𝑥𝐵𝜑}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabeqi
StepHypRef Expression
1 nfcv 2319 . 2 𝑥𝐴
2 nfcv 2319 . 2 𝑥𝐵
3 rabeqi.1 . 2 𝐴 = 𝐵
41, 2, 3rabeqif 2729 1 {𝑥𝐴𝜑} = {𝑥𝐵𝜑}
Colors of variables: wff set class
Syntax hints:   = wceq 1353  {crab 2459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rab 2464
This theorem is referenced by:  phimullem  12225  odzcllem  12242  odzdvds  12245
  Copyright terms: Public domain W3C validator