ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqi GIF version

Theorem rabeqi 2718
Description: Equality theorem for restricted class abstractions. Inference form of rabeq 2717. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
rabeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
rabeqi {𝑥𝐴𝜑} = {𝑥𝐵𝜑}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabeqi
StepHypRef Expression
1 nfcv 2307 . 2 𝑥𝐴
2 nfcv 2307 . 2 𝑥𝐵
3 rabeqi.1 . 2 𝐴 = 𝐵
41, 2, 3rabeqif 2716 1 {𝑥𝐴𝜑} = {𝑥𝐵𝜑}
Colors of variables: wff set class
Syntax hints:   = wceq 1343  {crab 2447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-rab 2452
This theorem is referenced by:  phimullem  12153  odzcllem  12170  odzdvds  12173
  Copyright terms: Public domain W3C validator