ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeq GIF version

Theorem rabeq 2755
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
rabeq (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabeq
StepHypRef Expression
1 nfcv 2339 . 2 𝑥𝐴
2 nfcv 2339 . 2 𝑥𝐵
31, 2rabeqf 2753 1 (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  {crab 2479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484
This theorem is referenced by:  rabeqdv  2757  rabeqbidv  2758  rabeqbidva  2759  difeq1  3274  ifeq1  3564  ifeq2  3565  elfvmptrab  5657  pmvalg  6718  unfiexmid  6979  ssfirab  6997  supeq2  7055  iooval2  9990  fzval2  10086  clsfval  14337
  Copyright terms: Public domain W3C validator