ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeq GIF version

Theorem rabeq 2614
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
rabeq (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabeq
StepHypRef Expression
1 nfcv 2229 . 2 𝑥𝐴
2 nfcv 2229 . 2 𝑥𝐵
31, 2rabeqf 2612 1 (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1290  {crab 2364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-rab 2369
This theorem is referenced by:  rabeqdv  2616  rabeqbidv  2617  rabeqbidva  2618  difeq1  3114  ifeq1  3402  ifeq2  3403  pmvalg  6432  unfiexmid  6684  ssfirab  6699  supeq2  6740  iooval2  9396  fzval2  9490  lcmval  11386  lcmcllem  11390  lcmledvds  11393  clsfval  11864
  Copyright terms: Public domain W3C validator