![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabeq | GIF version |
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) |
Ref | Expression |
---|---|
rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2332 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2332 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | rabeqf 2742 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 {crab 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rab 2477 |
This theorem is referenced by: rabeqdv 2746 rabeqbidv 2747 rabeqbidva 2748 difeq1 3261 ifeq1 3552 ifeq2 3553 elfvmptrab 5632 pmvalg 6686 unfiexmid 6947 ssfirab 6963 supeq2 7019 iooval2 9947 fzval2 10043 clsfval 14078 |
Copyright terms: Public domain | W3C validator |