![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabeq | GIF version |
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) |
Ref | Expression |
---|---|
rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2229 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2229 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | rabeqf 2612 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 {crab 2364 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-rab 2369 |
This theorem is referenced by: rabeqdv 2616 rabeqbidv 2617 rabeqbidva 2618 difeq1 3114 ifeq1 3402 ifeq2 3403 pmvalg 6432 unfiexmid 6684 ssfirab 6699 supeq2 6740 iooval2 9396 fzval2 9490 lcmval 11386 lcmcllem 11390 lcmledvds 11393 clsfval 11864 |
Copyright terms: Public domain | W3C validator |