| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabeq | GIF version | ||
| Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) |
| Ref | Expression |
|---|---|
| rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | rabeqf 2753 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 {crab 2479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 |
| This theorem is referenced by: rabeqdv 2757 rabeqbidv 2758 rabeqbidva 2759 difeq1 3274 ifeq1 3564 ifeq2 3565 elfvmptrab 5657 pmvalg 6718 unfiexmid 6979 ssfirab 6997 supeq2 7055 iooval2 9990 fzval2 10086 clsfval 14337 |
| Copyright terms: Public domain | W3C validator |