| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabeq | GIF version | ||
| Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) |
| Ref | Expression |
|---|---|
| rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2348 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | rabeqf 2762 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 {crab 2488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 |
| This theorem is referenced by: rabeqdv 2766 rabeqbidv 2767 rabeqbidva 2768 difeq1 3284 ifeq1 3574 ifeq2 3575 elfvmptrab 5675 pmvalg 6746 unfiexmid 7015 ssfirab 7033 supeq2 7091 iooval2 10037 fzval2 10133 clsfval 14573 |
| Copyright terms: Public domain | W3C validator |