ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeq GIF version

Theorem rabeq 2791
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
rabeq (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabeq
StepHypRef Expression
1 nfcv 2372 . 2 𝑥𝐴
2 nfcv 2372 . 2 𝑥𝐵
31, 2rabeqf 2789 1 (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  {crab 2512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517
This theorem is referenced by:  rabeqdv  2793  rabeqbidv  2794  rabeqbidva  2795  difeq1  3315  ifeq1  3605  ifeq2  3606  elfvmptrab  5729  pmvalg  6804  unfiexmid  7076  ssfirab  7094  supeq2  7152  iooval2  10107  fzval2  10203  clsfval  14769  incistruhgr  15884
  Copyright terms: Public domain W3C validator