ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islss4 GIF version

Theorem islss4 14014
Description: A linear subspace is a subgroup which respects scalar multiplication. (Contributed by Stefan O'Rear, 11-Dec-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
islss4.f 𝐹 = (Scalar‘𝑊)
islss4.b 𝐵 = (Base‘𝐹)
islss4.v 𝑉 = (Base‘𝑊)
islss4.t · = ( ·𝑠𝑊)
islss4.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
islss4 (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)))
Distinct variable groups:   𝐹,𝑎,𝑏   𝑊,𝑎,𝑏   𝐵,𝑎,𝑏   𝑉,𝑎,𝑏   · ,𝑎,𝑏   𝑆,𝑎,𝑏   𝑈,𝑎,𝑏

Proof of Theorem islss4
Dummy variables 𝑐 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islss4.s . . . 4 𝑆 = (LSubSp‘𝑊)
21lsssubg 14009 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
3 islss4.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 islss4.t . . . . 5 · = ( ·𝑠𝑊)
5 islss4.b . . . . 5 𝐵 = (Base‘𝐹)
63, 4, 5, 1lssvscl 14007 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑎𝐵𝑏𝑈)) → (𝑎 · 𝑏) ∈ 𝑈)
76ralrimivva 2579 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)
82, 7jca 306 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈))
9 islss4.v . . . . 5 𝑉 = (Base‘𝑊)
109subgss 13380 . . . 4 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈𝑉)
1110ad2antrl 490 . . 3 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈𝑉)
12 eqid 2196 . . . . . 6 (0g𝑊) = (0g𝑊)
1312subg0cl 13388 . . . . 5 (𝑈 ∈ (SubGrp‘𝑊) → (0g𝑊) ∈ 𝑈)
14 elex2 2779 . . . . 5 ((0g𝑊) ∈ 𝑈 → ∃𝑗 𝑗𝑈)
1513, 14syl 14 . . . 4 (𝑈 ∈ (SubGrp‘𝑊) → ∃𝑗 𝑗𝑈)
1615ad2antrl 490 . . 3 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → ∃𝑗 𝑗𝑈)
17 eqid 2196 . . . . . . . . . 10 (+g𝑊) = (+g𝑊)
1817subgcl 13390 . . . . . . . . 9 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑎 · 𝑏) ∈ 𝑈𝑐𝑈) → ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)
19183exp 1204 . . . . . . . 8 (𝑈 ∈ (SubGrp‘𝑊) → ((𝑎 · 𝑏) ∈ 𝑈 → (𝑐𝑈 → ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)))
2019adantl 277 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑎 · 𝑏) ∈ 𝑈 → (𝑐𝑈 → ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)))
2120ralrimdv 2576 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑎 · 𝑏) ∈ 𝑈 → ∀𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈))
2221ralimdv 2565 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (∀𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈 → ∀𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈))
2322ralimdv 2565 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈 → ∀𝑎𝐵𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈))
2423impr 379 . . 3 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → ∀𝑎𝐵𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)
253, 5, 9, 17, 4, 1islssmg 13990 . . . 4 (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈𝑉 ∧ ∃𝑗 𝑗𝑈 ∧ ∀𝑎𝐵𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)))
2625adantr 276 . . 3 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → (𝑈𝑆 ↔ (𝑈𝑉 ∧ ∃𝑗 𝑗𝑈 ∧ ∀𝑎𝐵𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)))
2711, 16, 24, 26mpbir3and 1182 . 2 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈𝑆)
288, 27impbida 596 1 (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1506  wcel 2167  wral 2475  wss 3157  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  Scalarcsca 12783   ·𝑠 cvsca 12784  0gc0g 12958  SubGrpcsubg 13373  LModclmod 13919  LSubSpclss 13984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-sbg 13207  df-subg 13376  df-mgp 13553  df-ur 13592  df-ring 13630  df-lmod 13921  df-lssm 13985
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator