![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > islss4 | GIF version |
Description: A linear subspace is a subgroup which respects scalar multiplication. (Contributed by Stefan O'Rear, 11-Dec-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
islss4.f | ⊢ 𝐹 = (Scalar‘𝑊) |
islss4.b | ⊢ 𝐵 = (Base‘𝐹) |
islss4.v | ⊢ 𝑉 = (Base‘𝑊) |
islss4.t | ⊢ · = ( ·𝑠 ‘𝑊) |
islss4.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
islss4 | ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islss4.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
2 | 1 | lsssubg 13566 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
3 | islss4.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | islss4.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
5 | islss4.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
6 | 3, 4, 5, 1 | lssvscl 13564 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝑈)) → (𝑎 · 𝑏) ∈ 𝑈) |
7 | 6 | ralrimivva 2569 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈) |
8 | 2, 7 | jca 306 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) |
9 | islss4.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
10 | 9 | subgss 13066 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ⊆ 𝑉) |
11 | 10 | ad2antrl 490 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈 ⊆ 𝑉) |
12 | eqid 2187 | . . . . . 6 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
13 | 12 | subg0cl 13074 | . . . . 5 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → (0g‘𝑊) ∈ 𝑈) |
14 | elex2 2765 | . . . . 5 ⊢ ((0g‘𝑊) ∈ 𝑈 → ∃𝑗 𝑗 ∈ 𝑈) | |
15 | 13, 14 | syl 14 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → ∃𝑗 𝑗 ∈ 𝑈) |
16 | 15 | ad2antrl 490 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → ∃𝑗 𝑗 ∈ 𝑈) |
17 | eqid 2187 | . . . . . . . . . 10 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
18 | 17 | subgcl 13076 | . . . . . . . . 9 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑎 · 𝑏) ∈ 𝑈 ∧ 𝑐 ∈ 𝑈) → ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈) |
19 | 18 | 3exp 1203 | . . . . . . . 8 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → ((𝑎 · 𝑏) ∈ 𝑈 → (𝑐 ∈ 𝑈 → ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈))) |
20 | 19 | adantl 277 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑎 · 𝑏) ∈ 𝑈 → (𝑐 ∈ 𝑈 → ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈))) |
21 | 20 | ralrimdv 2566 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑎 · 𝑏) ∈ 𝑈 → ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈)) |
22 | 21 | ralimdv 2555 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈 → ∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈)) |
23 | 22 | ralimdv 2555 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈 → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈)) |
24 | 23 | impr 379 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈) |
25 | 3, 5, 9, 17, 4, 1 | islssmg 13547 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈))) |
26 | 25 | adantr 276 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈))) |
27 | 11, 16, 24, 26 | mpbir3and 1181 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈 ∈ 𝑆) |
28 | 8, 27 | impbida 596 | 1 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 979 = wceq 1363 ∃wex 1502 ∈ wcel 2158 ∀wral 2465 ⊆ wss 3141 ‘cfv 5228 (class class class)co 5888 Basecbs 12476 +gcplusg 12551 Scalarcsca 12554 ·𝑠 cvsca 12555 0gc0g 12723 SubGrpcsubg 13059 LModclmod 13476 LSubSpclss 13541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-pre-ltirr 7937 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-pnf 8008 df-mnf 8009 df-ltxr 8011 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-5 8995 df-6 8996 df-ndx 12479 df-slot 12480 df-base 12482 df-sets 12483 df-iress 12484 df-plusg 12564 df-mulr 12565 df-sca 12567 df-vsca 12568 df-0g 12725 df-mgm 12794 df-sgrp 12827 df-mnd 12840 df-grp 12902 df-minusg 12903 df-sbg 12904 df-subg 13062 df-mgp 13173 df-ur 13212 df-ring 13250 df-lmod 13478 df-lssm 13542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |