![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > islss4 | GIF version |
Description: A linear subspace is a subgroup which respects scalar multiplication. (Contributed by Stefan O'Rear, 11-Dec-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
islss4.f | ⊢ 𝐹 = (Scalar‘𝑊) |
islss4.b | ⊢ 𝐵 = (Base‘𝐹) |
islss4.v | ⊢ 𝑉 = (Base‘𝑊) |
islss4.t | ⊢ · = ( ·𝑠 ‘𝑊) |
islss4.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
islss4 | ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islss4.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
2 | 1 | lsssubg 13876 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
3 | islss4.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | islss4.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
5 | islss4.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
6 | 3, 4, 5, 1 | lssvscl 13874 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝑈)) → (𝑎 · 𝑏) ∈ 𝑈) |
7 | 6 | ralrimivva 2576 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈) |
8 | 2, 7 | jca 306 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) |
9 | islss4.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
10 | 9 | subgss 13247 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ⊆ 𝑉) |
11 | 10 | ad2antrl 490 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈 ⊆ 𝑉) |
12 | eqid 2193 | . . . . . 6 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
13 | 12 | subg0cl 13255 | . . . . 5 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → (0g‘𝑊) ∈ 𝑈) |
14 | elex2 2776 | . . . . 5 ⊢ ((0g‘𝑊) ∈ 𝑈 → ∃𝑗 𝑗 ∈ 𝑈) | |
15 | 13, 14 | syl 14 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → ∃𝑗 𝑗 ∈ 𝑈) |
16 | 15 | ad2antrl 490 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → ∃𝑗 𝑗 ∈ 𝑈) |
17 | eqid 2193 | . . . . . . . . . 10 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
18 | 17 | subgcl 13257 | . . . . . . . . 9 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑎 · 𝑏) ∈ 𝑈 ∧ 𝑐 ∈ 𝑈) → ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈) |
19 | 18 | 3exp 1204 | . . . . . . . 8 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → ((𝑎 · 𝑏) ∈ 𝑈 → (𝑐 ∈ 𝑈 → ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈))) |
20 | 19 | adantl 277 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑎 · 𝑏) ∈ 𝑈 → (𝑐 ∈ 𝑈 → ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈))) |
21 | 20 | ralrimdv 2573 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑎 · 𝑏) ∈ 𝑈 → ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈)) |
22 | 21 | ralimdv 2562 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈 → ∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈)) |
23 | 22 | ralimdv 2562 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈 → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈)) |
24 | 23 | impr 379 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈) |
25 | 3, 5, 9, 17, 4, 1 | islssmg 13857 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈))) |
26 | 25 | adantr 276 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈))) |
27 | 11, 16, 24, 26 | mpbir3and 1182 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈 ∈ 𝑆) |
28 | 8, 27 | impbida 596 | 1 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3154 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 +gcplusg 12698 Scalarcsca 12701 ·𝑠 cvsca 12702 0gc0g 12870 SubGrpcsubg 13240 LModclmod 13786 LSubSpclss 13851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-plusg 12711 df-mulr 12712 df-sca 12714 df-vsca 12715 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-sbg 13080 df-subg 13243 df-mgp 13420 df-ur 13459 df-ring 13497 df-lmod 13788 df-lssm 13852 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |