Step | Hyp | Ref
| Expression |
1 | | islss4.s |
. . . 4
β’ π = (LSubSpβπ) |
2 | 1 | lsssubg 13469 |
. . 3
β’ ((π β LMod β§ π β π) β π β (SubGrpβπ)) |
3 | | islss4.f |
. . . . 5
β’ πΉ = (Scalarβπ) |
4 | | islss4.t |
. . . . 5
β’ Β· = (
Β·π βπ) |
5 | | islss4.b |
. . . . 5
β’ π΅ = (BaseβπΉ) |
6 | 3, 4, 5, 1 | lssvscl 13467 |
. . . 4
β’ (((π β LMod β§ π β π) β§ (π β π΅ β§ π β π)) β (π Β· π) β π) |
7 | 6 | ralrimivva 2559 |
. . 3
β’ ((π β LMod β§ π β π) β βπ β π΅ βπ β π (π Β· π) β π) |
8 | 2, 7 | jca 306 |
. 2
β’ ((π β LMod β§ π β π) β (π β (SubGrpβπ) β§ βπ β π΅ βπ β π (π Β· π) β π)) |
9 | | islss4.v |
. . . . 5
β’ π = (Baseβπ) |
10 | 9 | subgss 13039 |
. . . 4
β’ (π β (SubGrpβπ) β π β π) |
11 | 10 | ad2antrl 490 |
. . 3
β’ ((π β LMod β§ (π β (SubGrpβπ) β§ βπ β π΅ βπ β π (π Β· π) β π)) β π β π) |
12 | | eqid 2177 |
. . . . . 6
β’
(0gβπ) = (0gβπ) |
13 | 12 | subg0cl 13047 |
. . . . 5
β’ (π β (SubGrpβπ) β
(0gβπ)
β π) |
14 | | elex2 2755 |
. . . . 5
β’
((0gβπ) β π β βπ π β π) |
15 | 13, 14 | syl 14 |
. . . 4
β’ (π β (SubGrpβπ) β βπ π β π) |
16 | 15 | ad2antrl 490 |
. . 3
β’ ((π β LMod β§ (π β (SubGrpβπ) β§ βπ β π΅ βπ β π (π Β· π) β π)) β βπ π β π) |
17 | | eqid 2177 |
. . . . . . . . . 10
β’
(+gβπ) = (+gβπ) |
18 | 17 | subgcl 13049 |
. . . . . . . . 9
β’ ((π β (SubGrpβπ) β§ (π Β· π) β π β§ π β π) β ((π Β· π)(+gβπ)π) β π) |
19 | 18 | 3exp 1202 |
. . . . . . . 8
β’ (π β (SubGrpβπ) β ((π Β· π) β π β (π β π β ((π Β· π)(+gβπ)π) β π))) |
20 | 19 | adantl 277 |
. . . . . . 7
β’ ((π β LMod β§ π β (SubGrpβπ)) β ((π Β· π) β π β (π β π β ((π Β· π)(+gβπ)π) β π))) |
21 | 20 | ralrimdv 2556 |
. . . . . 6
β’ ((π β LMod β§ π β (SubGrpβπ)) β ((π Β· π) β π β βπ β π ((π Β· π)(+gβπ)π) β π)) |
22 | 21 | ralimdv 2545 |
. . . . 5
β’ ((π β LMod β§ π β (SubGrpβπ)) β (βπ β π (π Β· π) β π β βπ β π βπ β π ((π Β· π)(+gβπ)π) β π)) |
23 | 22 | ralimdv 2545 |
. . . 4
β’ ((π β LMod β§ π β (SubGrpβπ)) β (βπ β π΅ βπ β π (π Β· π) β π β βπ β π΅ βπ β π βπ β π ((π Β· π)(+gβπ)π) β π)) |
24 | 23 | impr 379 |
. . 3
β’ ((π β LMod β§ (π β (SubGrpβπ) β§ βπ β π΅ βπ β π (π Β· π) β π)) β βπ β π΅ βπ β π βπ β π ((π Β· π)(+gβπ)π) β π) |
25 | 3, 5, 9, 17, 4, 1 | islssm 13450 |
. . . 4
β’ (π β LMod β (π β π β (π β π β§ βπ π β π β§ βπ β π΅ βπ β π βπ β π ((π Β· π)(+gβπ)π) β π))) |
26 | 25 | adantr 276 |
. . 3
β’ ((π β LMod β§ (π β (SubGrpβπ) β§ βπ β π΅ βπ β π (π Β· π) β π)) β (π β π β (π β π β§ βπ π β π β§ βπ β π΅ βπ β π βπ β π ((π Β· π)(+gβπ)π) β π))) |
27 | 11, 16, 24, 26 | mpbir3and 1180 |
. 2
β’ ((π β LMod β§ (π β (SubGrpβπ) β§ βπ β π΅ βπ β π (π Β· π) β π)) β π β π) |
28 | 8, 27 | impbida 596 |
1
β’ (π β LMod β (π β π β (π β (SubGrpβπ) β§ βπ β π΅ βπ β π (π Β· π) β π))) |