ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimivv GIF version

Theorem ralrimivv 2587
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.)
Hypothesis
Ref Expression
ralrimivv.1 (𝜑 → ((𝑥𝐴𝑦𝐵) → 𝜓))
Assertion
Ref Expression
ralrimivv (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦,𝜑   𝑦,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem ralrimivv
StepHypRef Expression
1 ralrimivv.1 . . . 4 (𝜑 → ((𝑥𝐴𝑦𝐵) → 𝜓))
21expd 258 . . 3 (𝜑 → (𝑥𝐴 → (𝑦𝐵𝜓)))
32ralrimdv 2585 . 2 (𝜑 → (𝑥𝐴 → ∀𝑦𝐵 𝜓))
43ralrimiv 2578 1 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2176  wral 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-4 1533  ax-17 1549
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-ral 2489
This theorem is referenced by:  ralrimivva  2588  ralrimdvv  2590  reuind  2978  ssrel2  4765  f1o2ndf1  6314  smoiso  6388  nndifsnid  6593  receuap  8742  lbreu  9018  0subm  13316  insubm  13317  iscmnd  13634  quscrng  14295  tgcl  14536  topbas  14539  epttop  14562  restbasg  14640  txbas  14730  txbasval  14739  blfps  14881  blf  14882  blbas  14905
  Copyright terms: Public domain W3C validator