ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimivv GIF version

Theorem ralrimivv 2578
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.)
Hypothesis
Ref Expression
ralrimivv.1 (𝜑 → ((𝑥𝐴𝑦𝐵) → 𝜓))
Assertion
Ref Expression
ralrimivv (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦,𝜑   𝑦,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem ralrimivv
StepHypRef Expression
1 ralrimivv.1 . . . 4 (𝜑 → ((𝑥𝐴𝑦𝐵) → 𝜓))
21expd 258 . . 3 (𝜑 → (𝑥𝐴 → (𝑦𝐵𝜓)))
32ralrimdv 2576 . 2 (𝜑 → (𝑥𝐴 → ∀𝑦𝐵 𝜓))
43ralrimiv 2569 1 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480
This theorem is referenced by:  ralrimivva  2579  ralrimdvv  2581  reuind  2969  ssrel2  4754  f1o2ndf1  6295  smoiso  6369  nndifsnid  6574  receuap  8713  lbreu  8989  0subm  13186  insubm  13187  iscmnd  13504  quscrng  14165  tgcl  14384  topbas  14387  epttop  14410  restbasg  14488  txbas  14578  txbasval  14587  blfps  14729  blf  14730  blbas  14753
  Copyright terms: Public domain W3C validator