ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimivv GIF version

Theorem ralrimivv 2547
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.)
Hypothesis
Ref Expression
ralrimivv.1 (𝜑 → ((𝑥𝐴𝑦𝐵) → 𝜓))
Assertion
Ref Expression
ralrimivv (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦,𝜑   𝑦,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem ralrimivv
StepHypRef Expression
1 ralrimivv.1 . . . 4 (𝜑 → ((𝑥𝐴𝑦𝐵) → 𝜓))
21expd 256 . . 3 (𝜑 → (𝑥𝐴 → (𝑦𝐵𝜓)))
32ralrimdv 2545 . 2 (𝜑 → (𝑥𝐴 → ∀𝑦𝐵 𝜓))
43ralrimiv 2538 1 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2136  wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-ral 2449
This theorem is referenced by:  ralrimivva  2548  ralrimdvv  2550  reuind  2931  ssrel2  4694  f1o2ndf1  6196  smoiso  6270  nndifsnid  6475  receuap  8566  lbreu  8840  tgcl  12704  topbas  12707  epttop  12730  restbasg  12808  txbas  12898  txbasval  12907  blfps  13049  blf  13050  blbas  13073
  Copyright terms: Public domain W3C validator