| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralrimivv | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.) |
| Ref | Expression |
|---|---|
| ralrimivv.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) |
| Ref | Expression |
|---|---|
| ralrimivv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivv.1 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) | |
| 2 | 1 | expd 258 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜓))) |
| 3 | 2 | ralrimdv 2585 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜓)) |
| 4 | 3 | ralrimiv 2578 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2176 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 |
| This theorem is referenced by: ralrimivva 2588 ralrimdvv 2590 reuind 2978 ssrel2 4766 f1o2ndf1 6316 smoiso 6390 nndifsnid 6595 receuap 8744 lbreu 9020 0subm 13349 insubm 13350 iscmnd 13667 quscrng 14328 tgcl 14569 topbas 14572 epttop 14595 restbasg 14673 txbas 14763 txbasval 14772 blfps 14914 blf 14915 blbas 14938 |
| Copyright terms: Public domain | W3C validator |