ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimivv GIF version

Theorem ralrimivv 2589
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.)
Hypothesis
Ref Expression
ralrimivv.1 (𝜑 → ((𝑥𝐴𝑦𝐵) → 𝜓))
Assertion
Ref Expression
ralrimivv (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦,𝜑   𝑦,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem ralrimivv
StepHypRef Expression
1 ralrimivv.1 . . . 4 (𝜑 → ((𝑥𝐴𝑦𝐵) → 𝜓))
21expd 258 . . 3 (𝜑 → (𝑥𝐴 → (𝑦𝐵𝜓)))
32ralrimdv 2587 . 2 (𝜑 → (𝑥𝐴 → ∀𝑦𝐵 𝜓))
43ralrimiv 2580 1 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2178  wral 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-4 1534  ax-17 1550
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-ral 2491
This theorem is referenced by:  ralrimivva  2590  ralrimdvv  2592  reuind  2985  ssrel2  4783  f1o2ndf1  6337  smoiso  6411  nndifsnid  6616  receuap  8777  lbreu  9053  0subm  13431  insubm  13432  iscmnd  13749  quscrng  14410  tgcl  14651  topbas  14654  epttop  14677  restbasg  14755  txbas  14845  txbasval  14854  blfps  14996  blf  14997  blbas  15020
  Copyright terms: Public domain W3C validator