ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nneneq GIF version

Theorem nneneq 6553
Description: Two equinumerous natural numbers are equal. Proposition 10.20 of [TakeutiZaring] p. 90 and its converse. Also compare Corollary 6E of [Enderton] p. 136. (Contributed by NM, 28-May-1998.)
Assertion
Ref Expression
nneneq ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem nneneq
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3840 . . . . . 6 (𝑥 = ∅ → (𝑥𝑧 ↔ ∅ ≈ 𝑧))
2 eqeq1 2094 . . . . . 6 (𝑥 = ∅ → (𝑥 = 𝑧 ↔ ∅ = 𝑧))
31, 2imbi12d 232 . . . . 5 (𝑥 = ∅ → ((𝑥𝑧𝑥 = 𝑧) ↔ (∅ ≈ 𝑧 → ∅ = 𝑧)))
43ralbidv 2380 . . . 4 (𝑥 = ∅ → (∀𝑧 ∈ ω (𝑥𝑧𝑥 = 𝑧) ↔ ∀𝑧 ∈ ω (∅ ≈ 𝑧 → ∅ = 𝑧)))
5 breq1 3840 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
6 eqeq1 2094 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
75, 6imbi12d 232 . . . . 5 (𝑥 = 𝑦 → ((𝑥𝑧𝑥 = 𝑧) ↔ (𝑦𝑧𝑦 = 𝑧)))
87ralbidv 2380 . . . 4 (𝑥 = 𝑦 → (∀𝑧 ∈ ω (𝑥𝑧𝑥 = 𝑧) ↔ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)))
9 breq1 3840 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥𝑧 ↔ suc 𝑦𝑧))
10 eqeq1 2094 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥 = 𝑧 ↔ suc 𝑦 = 𝑧))
119, 10imbi12d 232 . . . . 5 (𝑥 = suc 𝑦 → ((𝑥𝑧𝑥 = 𝑧) ↔ (suc 𝑦𝑧 → suc 𝑦 = 𝑧)))
1211ralbidv 2380 . . . 4 (𝑥 = suc 𝑦 → (∀𝑧 ∈ ω (𝑥𝑧𝑥 = 𝑧) ↔ ∀𝑧 ∈ ω (suc 𝑦𝑧 → suc 𝑦 = 𝑧)))
13 breq1 3840 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑧𝐴𝑧))
14 eqeq1 2094 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = 𝑧𝐴 = 𝑧))
1513, 14imbi12d 232 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑧𝑥 = 𝑧) ↔ (𝐴𝑧𝐴 = 𝑧)))
1615ralbidv 2380 . . . 4 (𝑥 = 𝐴 → (∀𝑧 ∈ ω (𝑥𝑧𝑥 = 𝑧) ↔ ∀𝑧 ∈ ω (𝐴𝑧𝐴 = 𝑧)))
17 ensym 6478 . . . . . 6 (∅ ≈ 𝑧𝑧 ≈ ∅)
18 en0 6492 . . . . . . 7 (𝑧 ≈ ∅ ↔ 𝑧 = ∅)
19 eqcom 2090 . . . . . . 7 (𝑧 = ∅ ↔ ∅ = 𝑧)
2018, 19bitri 182 . . . . . 6 (𝑧 ≈ ∅ ↔ ∅ = 𝑧)
2117, 20sylib 120 . . . . 5 (∅ ≈ 𝑧 → ∅ = 𝑧)
2221rgenw 2430 . . . 4 𝑧 ∈ ω (∅ ≈ 𝑧 → ∅ = 𝑧)
23 nn0suc 4409 . . . . . . 7 (𝑤 ∈ ω → (𝑤 = ∅ ∨ ∃𝑧 ∈ ω 𝑤 = suc 𝑧))
24 en0 6492 . . . . . . . . . . . 12 (suc 𝑦 ≈ ∅ ↔ suc 𝑦 = ∅)
25 breq2 3841 . . . . . . . . . . . . 13 (𝑤 = ∅ → (suc 𝑦𝑤 ↔ suc 𝑦 ≈ ∅))
26 eqeq2 2097 . . . . . . . . . . . . 13 (𝑤 = ∅ → (suc 𝑦 = 𝑤 ↔ suc 𝑦 = ∅))
2725, 26bibi12d 233 . . . . . . . . . . . 12 (𝑤 = ∅ → ((suc 𝑦𝑤 ↔ suc 𝑦 = 𝑤) ↔ (suc 𝑦 ≈ ∅ ↔ suc 𝑦 = ∅)))
2824, 27mpbiri 166 . . . . . . . . . . 11 (𝑤 = ∅ → (suc 𝑦𝑤 ↔ suc 𝑦 = 𝑤))
2928biimpd 142 . . . . . . . . . 10 (𝑤 = ∅ → (suc 𝑦𝑤 → suc 𝑦 = 𝑤))
3029a1i 9 . . . . . . . . 9 ((𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)) → (𝑤 = ∅ → (suc 𝑦𝑤 → suc 𝑦 = 𝑤)))
31 nfv 1466 . . . . . . . . . . 11 𝑧 𝑦 ∈ ω
32 nfra1 2409 . . . . . . . . . . 11 𝑧𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)
3331, 32nfan 1502 . . . . . . . . . 10 𝑧(𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧))
34 nfv 1466 . . . . . . . . . 10 𝑧(suc 𝑦𝑤 → suc 𝑦 = 𝑤)
35 rsp 2423 . . . . . . . . . . . . . 14 (∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧) → (𝑧 ∈ ω → (𝑦𝑧𝑦 = 𝑧)))
36 vex 2622 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
37 vex 2622 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
3836, 37phplem4 6551 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (suc 𝑦 ≈ suc 𝑧𝑦𝑧))
3938imim1d 74 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦𝑧𝑦 = 𝑧) → (suc 𝑦 ≈ suc 𝑧𝑦 = 𝑧)))
4039ex 113 . . . . . . . . . . . . . . 15 (𝑦 ∈ ω → (𝑧 ∈ ω → ((𝑦𝑧𝑦 = 𝑧) → (suc 𝑦 ≈ suc 𝑧𝑦 = 𝑧))))
4140a2d 26 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → ((𝑧 ∈ ω → (𝑦𝑧𝑦 = 𝑧)) → (𝑧 ∈ ω → (suc 𝑦 ≈ suc 𝑧𝑦 = 𝑧))))
4235, 41syl5 32 . . . . . . . . . . . . 13 (𝑦 ∈ ω → (∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧) → (𝑧 ∈ ω → (suc 𝑦 ≈ suc 𝑧𝑦 = 𝑧))))
4342imp 122 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)) → (𝑧 ∈ ω → (suc 𝑦 ≈ suc 𝑧𝑦 = 𝑧)))
44 suceq 4220 . . . . . . . . . . . 12 (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧)
4543, 44syl8 70 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)) → (𝑧 ∈ ω → (suc 𝑦 ≈ suc 𝑧 → suc 𝑦 = suc 𝑧)))
46 breq2 3841 . . . . . . . . . . . . 13 (𝑤 = suc 𝑧 → (suc 𝑦𝑤 ↔ suc 𝑦 ≈ suc 𝑧))
47 eqeq2 2097 . . . . . . . . . . . . 13 (𝑤 = suc 𝑧 → (suc 𝑦 = 𝑤 ↔ suc 𝑦 = suc 𝑧))
4846, 47imbi12d 232 . . . . . . . . . . . 12 (𝑤 = suc 𝑧 → ((suc 𝑦𝑤 → suc 𝑦 = 𝑤) ↔ (suc 𝑦 ≈ suc 𝑧 → suc 𝑦 = suc 𝑧)))
4948biimprcd 158 . . . . . . . . . . 11 ((suc 𝑦 ≈ suc 𝑧 → suc 𝑦 = suc 𝑧) → (𝑤 = suc 𝑧 → (suc 𝑦𝑤 → suc 𝑦 = 𝑤)))
5045, 49syl6 33 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)) → (𝑧 ∈ ω → (𝑤 = suc 𝑧 → (suc 𝑦𝑤 → suc 𝑦 = 𝑤))))
5133, 34, 50rexlimd 2486 . . . . . . . . 9 ((𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)) → (∃𝑧 ∈ ω 𝑤 = suc 𝑧 → (suc 𝑦𝑤 → suc 𝑦 = 𝑤)))
5230, 51jaod 672 . . . . . . . 8 ((𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)) → ((𝑤 = ∅ ∨ ∃𝑧 ∈ ω 𝑤 = suc 𝑧) → (suc 𝑦𝑤 → suc 𝑦 = 𝑤)))
5352ex 113 . . . . . . 7 (𝑦 ∈ ω → (∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧) → ((𝑤 = ∅ ∨ ∃𝑧 ∈ ω 𝑤 = suc 𝑧) → (suc 𝑦𝑤 → suc 𝑦 = 𝑤))))
5423, 53syl7 68 . . . . . 6 (𝑦 ∈ ω → (∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧) → (𝑤 ∈ ω → (suc 𝑦𝑤 → suc 𝑦 = 𝑤))))
5554ralrimdv 2452 . . . . 5 (𝑦 ∈ ω → (∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧) → ∀𝑤 ∈ ω (suc 𝑦𝑤 → suc 𝑦 = 𝑤)))
56 breq2 3841 . . . . . . 7 (𝑤 = 𝑧 → (suc 𝑦𝑤 ↔ suc 𝑦𝑧))
57 eqeq2 2097 . . . . . . 7 (𝑤 = 𝑧 → (suc 𝑦 = 𝑤 ↔ suc 𝑦 = 𝑧))
5856, 57imbi12d 232 . . . . . 6 (𝑤 = 𝑧 → ((suc 𝑦𝑤 → suc 𝑦 = 𝑤) ↔ (suc 𝑦𝑧 → suc 𝑦 = 𝑧)))
5958cbvralv 2590 . . . . 5 (∀𝑤 ∈ ω (suc 𝑦𝑤 → suc 𝑦 = 𝑤) ↔ ∀𝑧 ∈ ω (suc 𝑦𝑧 → suc 𝑦 = 𝑧))
6055, 59syl6ib 159 . . . 4 (𝑦 ∈ ω → (∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧) → ∀𝑧 ∈ ω (suc 𝑦𝑧 → suc 𝑦 = 𝑧)))
614, 8, 12, 16, 22, 60finds 4405 . . 3 (𝐴 ∈ ω → ∀𝑧 ∈ ω (𝐴𝑧𝐴 = 𝑧))
62 breq2 3841 . . . . 5 (𝑧 = 𝐵 → (𝐴𝑧𝐴𝐵))
63 eqeq2 2097 . . . . 5 (𝑧 = 𝐵 → (𝐴 = 𝑧𝐴 = 𝐵))
6462, 63imbi12d 232 . . . 4 (𝑧 = 𝐵 → ((𝐴𝑧𝐴 = 𝑧) ↔ (𝐴𝐵𝐴 = 𝐵)))
6564rspcv 2718 . . 3 (𝐵 ∈ ω → (∀𝑧 ∈ ω (𝐴𝑧𝐴 = 𝑧) → (𝐴𝐵𝐴 = 𝐵)))
6661, 65mpan9 275 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
67 eqeng 6463 . . 3 (𝐴 ∈ ω → (𝐴 = 𝐵𝐴𝐵))
6867adantr 270 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵𝐴𝐵))
6966, 68impbid 127 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 664   = wceq 1289  wcel 1438  wral 2359  wrex 2360  c0 3284   class class class wbr 3837  suc csuc 4183  ωcom 4395  cen 6435
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-tr 3929  df-id 4111  df-iord 4184  df-on 4186  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-er 6272  df-en 6438
This theorem is referenced by:  findcard2  6585  findcard2s  6586  unsnfidcex  6610  unsnfidcel  6611  hashen  10157  hashunlem  10177
  Copyright terms: Public domain W3C validator