| Step | Hyp | Ref
| Expression |
| 1 | | breq1 4036 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝑥 ≈ 𝑧 ↔ ∅ ≈ 𝑧)) |
| 2 | | eqeq1 2203 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝑥 = 𝑧 ↔ ∅ = 𝑧)) |
| 3 | 1, 2 | imbi12d 234 |
. . . . 5
⊢ (𝑥 = ∅ → ((𝑥 ≈ 𝑧 → 𝑥 = 𝑧) ↔ (∅ ≈ 𝑧 → ∅ = 𝑧))) |
| 4 | 3 | ralbidv 2497 |
. . . 4
⊢ (𝑥 = ∅ → (∀𝑧 ∈ ω (𝑥 ≈ 𝑧 → 𝑥 = 𝑧) ↔ ∀𝑧 ∈ ω (∅ ≈ 𝑧 → ∅ = 𝑧))) |
| 5 | | breq1 4036 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ≈ 𝑧 ↔ 𝑦 ≈ 𝑧)) |
| 6 | | eqeq1 2203 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| 7 | 5, 6 | imbi12d 234 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑥 ≈ 𝑧 → 𝑥 = 𝑧) ↔ (𝑦 ≈ 𝑧 → 𝑦 = 𝑧))) |
| 8 | 7 | ralbidv 2497 |
. . . 4
⊢ (𝑥 = 𝑦 → (∀𝑧 ∈ ω (𝑥 ≈ 𝑧 → 𝑥 = 𝑧) ↔ ∀𝑧 ∈ ω (𝑦 ≈ 𝑧 → 𝑦 = 𝑧))) |
| 9 | | breq1 4036 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → (𝑥 ≈ 𝑧 ↔ suc 𝑦 ≈ 𝑧)) |
| 10 | | eqeq1 2203 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → (𝑥 = 𝑧 ↔ suc 𝑦 = 𝑧)) |
| 11 | 9, 10 | imbi12d 234 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → ((𝑥 ≈ 𝑧 → 𝑥 = 𝑧) ↔ (suc 𝑦 ≈ 𝑧 → suc 𝑦 = 𝑧))) |
| 12 | 11 | ralbidv 2497 |
. . . 4
⊢ (𝑥 = suc 𝑦 → (∀𝑧 ∈ ω (𝑥 ≈ 𝑧 → 𝑥 = 𝑧) ↔ ∀𝑧 ∈ ω (suc 𝑦 ≈ 𝑧 → suc 𝑦 = 𝑧))) |
| 13 | | breq1 4036 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝑧 ↔ 𝐴 ≈ 𝑧)) |
| 14 | | eqeq1 2203 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 = 𝑧 ↔ 𝐴 = 𝑧)) |
| 15 | 13, 14 | imbi12d 234 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑥 ≈ 𝑧 → 𝑥 = 𝑧) ↔ (𝐴 ≈ 𝑧 → 𝐴 = 𝑧))) |
| 16 | 15 | ralbidv 2497 |
. . . 4
⊢ (𝑥 = 𝐴 → (∀𝑧 ∈ ω (𝑥 ≈ 𝑧 → 𝑥 = 𝑧) ↔ ∀𝑧 ∈ ω (𝐴 ≈ 𝑧 → 𝐴 = 𝑧))) |
| 17 | | ensym 6840 |
. . . . . 6
⊢ (∅
≈ 𝑧 → 𝑧 ≈
∅) |
| 18 | | en0 6854 |
. . . . . . 7
⊢ (𝑧 ≈ ∅ ↔ 𝑧 = ∅) |
| 19 | | eqcom 2198 |
. . . . . . 7
⊢ (𝑧 = ∅ ↔ ∅ =
𝑧) |
| 20 | 18, 19 | bitri 184 |
. . . . . 6
⊢ (𝑧 ≈ ∅ ↔ ∅
= 𝑧) |
| 21 | 17, 20 | sylib 122 |
. . . . 5
⊢ (∅
≈ 𝑧 → ∅ =
𝑧) |
| 22 | 21 | rgenw 2552 |
. . . 4
⊢
∀𝑧 ∈
ω (∅ ≈ 𝑧
→ ∅ = 𝑧) |
| 23 | | nn0suc 4640 |
. . . . . . 7
⊢ (𝑤 ∈ ω → (𝑤 = ∅ ∨ ∃𝑧 ∈ ω 𝑤 = suc 𝑧)) |
| 24 | | en0 6854 |
. . . . . . . . . . . 12
⊢ (suc
𝑦 ≈ ∅ ↔
suc 𝑦 =
∅) |
| 25 | | breq2 4037 |
. . . . . . . . . . . . 13
⊢ (𝑤 = ∅ → (suc 𝑦 ≈ 𝑤 ↔ suc 𝑦 ≈ ∅)) |
| 26 | | eqeq2 2206 |
. . . . . . . . . . . . 13
⊢ (𝑤 = ∅ → (suc 𝑦 = 𝑤 ↔ suc 𝑦 = ∅)) |
| 27 | 25, 26 | bibi12d 235 |
. . . . . . . . . . . 12
⊢ (𝑤 = ∅ → ((suc 𝑦 ≈ 𝑤 ↔ suc 𝑦 = 𝑤) ↔ (suc 𝑦 ≈ ∅ ↔ suc 𝑦 = ∅))) |
| 28 | 24, 27 | mpbiri 168 |
. . . . . . . . . . 11
⊢ (𝑤 = ∅ → (suc 𝑦 ≈ 𝑤 ↔ suc 𝑦 = 𝑤)) |
| 29 | 28 | biimpd 144 |
. . . . . . . . . 10
⊢ (𝑤 = ∅ → (suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤)) |
| 30 | 29 | a1i 9 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ω ∧
∀𝑧 ∈ ω
(𝑦 ≈ 𝑧 → 𝑦 = 𝑧)) → (𝑤 = ∅ → (suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤))) |
| 31 | | nfv 1542 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧 𝑦 ∈ ω |
| 32 | | nfra1 2528 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧∀𝑧 ∈ ω (𝑦 ≈ 𝑧 → 𝑦 = 𝑧) |
| 33 | 31, 32 | nfan 1579 |
. . . . . . . . . 10
⊢
Ⅎ𝑧(𝑦 ∈ ω ∧
∀𝑧 ∈ ω
(𝑦 ≈ 𝑧 → 𝑦 = 𝑧)) |
| 34 | | nfv 1542 |
. . . . . . . . . 10
⊢
Ⅎ𝑧(suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤) |
| 35 | | rsp 2544 |
. . . . . . . . . . . . . 14
⊢
(∀𝑧 ∈
ω (𝑦 ≈ 𝑧 → 𝑦 = 𝑧) → (𝑧 ∈ ω → (𝑦 ≈ 𝑧 → 𝑦 = 𝑧))) |
| 36 | | vex 2766 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑦 ∈ V |
| 37 | | vex 2766 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑧 ∈ V |
| 38 | 36, 37 | phplem4 6916 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (suc
𝑦 ≈ suc 𝑧 → 𝑦 ≈ 𝑧)) |
| 39 | 38 | imim1d 75 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦 ≈ 𝑧 → 𝑦 = 𝑧) → (suc 𝑦 ≈ suc 𝑧 → 𝑦 = 𝑧))) |
| 40 | 39 | ex 115 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ω → (𝑧 ∈ ω → ((𝑦 ≈ 𝑧 → 𝑦 = 𝑧) → (suc 𝑦 ≈ suc 𝑧 → 𝑦 = 𝑧)))) |
| 41 | 40 | a2d 26 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ω → ((𝑧 ∈ ω → (𝑦 ≈ 𝑧 → 𝑦 = 𝑧)) → (𝑧 ∈ ω → (suc 𝑦 ≈ suc 𝑧 → 𝑦 = 𝑧)))) |
| 42 | 35, 41 | syl5 32 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ω →
(∀𝑧 ∈ ω
(𝑦 ≈ 𝑧 → 𝑦 = 𝑧) → (𝑧 ∈ ω → (suc 𝑦 ≈ suc 𝑧 → 𝑦 = 𝑧)))) |
| 43 | 42 | imp 124 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ω ∧
∀𝑧 ∈ ω
(𝑦 ≈ 𝑧 → 𝑦 = 𝑧)) → (𝑧 ∈ ω → (suc 𝑦 ≈ suc 𝑧 → 𝑦 = 𝑧))) |
| 44 | | suceq 4437 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧) |
| 45 | 43, 44 | syl8 71 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ω ∧
∀𝑧 ∈ ω
(𝑦 ≈ 𝑧 → 𝑦 = 𝑧)) → (𝑧 ∈ ω → (suc 𝑦 ≈ suc 𝑧 → suc 𝑦 = suc 𝑧))) |
| 46 | | breq2 4037 |
. . . . . . . . . . . . 13
⊢ (𝑤 = suc 𝑧 → (suc 𝑦 ≈ 𝑤 ↔ suc 𝑦 ≈ suc 𝑧)) |
| 47 | | eqeq2 2206 |
. . . . . . . . . . . . 13
⊢ (𝑤 = suc 𝑧 → (suc 𝑦 = 𝑤 ↔ suc 𝑦 = suc 𝑧)) |
| 48 | 46, 47 | imbi12d 234 |
. . . . . . . . . . . 12
⊢ (𝑤 = suc 𝑧 → ((suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤) ↔ (suc 𝑦 ≈ suc 𝑧 → suc 𝑦 = suc 𝑧))) |
| 49 | 48 | biimprcd 160 |
. . . . . . . . . . 11
⊢ ((suc
𝑦 ≈ suc 𝑧 → suc 𝑦 = suc 𝑧) → (𝑤 = suc 𝑧 → (suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤))) |
| 50 | 45, 49 | syl6 33 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ω ∧
∀𝑧 ∈ ω
(𝑦 ≈ 𝑧 → 𝑦 = 𝑧)) → (𝑧 ∈ ω → (𝑤 = suc 𝑧 → (suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤)))) |
| 51 | 33, 34, 50 | rexlimd 2611 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ω ∧
∀𝑧 ∈ ω
(𝑦 ≈ 𝑧 → 𝑦 = 𝑧)) → (∃𝑧 ∈ ω 𝑤 = suc 𝑧 → (suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤))) |
| 52 | 30, 51 | jaod 718 |
. . . . . . . 8
⊢ ((𝑦 ∈ ω ∧
∀𝑧 ∈ ω
(𝑦 ≈ 𝑧 → 𝑦 = 𝑧)) → ((𝑤 = ∅ ∨ ∃𝑧 ∈ ω 𝑤 = suc 𝑧) → (suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤))) |
| 53 | 52 | ex 115 |
. . . . . . 7
⊢ (𝑦 ∈ ω →
(∀𝑧 ∈ ω
(𝑦 ≈ 𝑧 → 𝑦 = 𝑧) → ((𝑤 = ∅ ∨ ∃𝑧 ∈ ω 𝑤 = suc 𝑧) → (suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤)))) |
| 54 | 23, 53 | syl7 69 |
. . . . . 6
⊢ (𝑦 ∈ ω →
(∀𝑧 ∈ ω
(𝑦 ≈ 𝑧 → 𝑦 = 𝑧) → (𝑤 ∈ ω → (suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤)))) |
| 55 | 54 | ralrimdv 2576 |
. . . . 5
⊢ (𝑦 ∈ ω →
(∀𝑧 ∈ ω
(𝑦 ≈ 𝑧 → 𝑦 = 𝑧) → ∀𝑤 ∈ ω (suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤))) |
| 56 | | breq2 4037 |
. . . . . . 7
⊢ (𝑤 = 𝑧 → (suc 𝑦 ≈ 𝑤 ↔ suc 𝑦 ≈ 𝑧)) |
| 57 | | eqeq2 2206 |
. . . . . . 7
⊢ (𝑤 = 𝑧 → (suc 𝑦 = 𝑤 ↔ suc 𝑦 = 𝑧)) |
| 58 | 56, 57 | imbi12d 234 |
. . . . . 6
⊢ (𝑤 = 𝑧 → ((suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤) ↔ (suc 𝑦 ≈ 𝑧 → suc 𝑦 = 𝑧))) |
| 59 | 58 | cbvralv 2729 |
. . . . 5
⊢
(∀𝑤 ∈
ω (suc 𝑦 ≈
𝑤 → suc 𝑦 = 𝑤) ↔ ∀𝑧 ∈ ω (suc 𝑦 ≈ 𝑧 → suc 𝑦 = 𝑧)) |
| 60 | 55, 59 | imbitrdi 161 |
. . . 4
⊢ (𝑦 ∈ ω →
(∀𝑧 ∈ ω
(𝑦 ≈ 𝑧 → 𝑦 = 𝑧) → ∀𝑧 ∈ ω (suc 𝑦 ≈ 𝑧 → suc 𝑦 = 𝑧))) |
| 61 | 4, 8, 12, 16, 22, 60 | finds 4636 |
. . 3
⊢ (𝐴 ∈ ω →
∀𝑧 ∈ ω
(𝐴 ≈ 𝑧 → 𝐴 = 𝑧)) |
| 62 | | breq2 4037 |
. . . . 5
⊢ (𝑧 = 𝐵 → (𝐴 ≈ 𝑧 ↔ 𝐴 ≈ 𝐵)) |
| 63 | | eqeq2 2206 |
. . . . 5
⊢ (𝑧 = 𝐵 → (𝐴 = 𝑧 ↔ 𝐴 = 𝐵)) |
| 64 | 62, 63 | imbi12d 234 |
. . . 4
⊢ (𝑧 = 𝐵 → ((𝐴 ≈ 𝑧 → 𝐴 = 𝑧) ↔ (𝐴 ≈ 𝐵 → 𝐴 = 𝐵))) |
| 65 | 64 | rspcv 2864 |
. . 3
⊢ (𝐵 ∈ ω →
(∀𝑧 ∈ ω
(𝐴 ≈ 𝑧 → 𝐴 = 𝑧) → (𝐴 ≈ 𝐵 → 𝐴 = 𝐵))) |
| 66 | 61, 65 | mpan9 281 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 → 𝐴 = 𝐵)) |
| 67 | | eqeng 6825 |
. . 3
⊢ (𝐴 ∈ ω → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) |
| 68 | 67 | adantr 276 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) |
| 69 | 66, 68 | impbid 129 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) |