Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralrimdva | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.) |
Ref | Expression |
---|---|
ralrimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralrimdva | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimdva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | ex 114 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
3 | 2 | com23 78 | . 2 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
4 | 3 | ralrimdv 2544 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 ∀wral 2443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2448 |
This theorem is referenced by: ralxfrd 4439 isoselem 5787 isosolem 5791 findcard 6850 nnsub 8892 supinfneg 9529 infsupneg 9530 ublbneg 9547 expnlbnd2 10576 cau3lem 11052 climshftlemg 11239 subcn2 11248 serf0 11289 sqrt2irr 12090 pclemub 12215 prmpwdvds 12281 tgcn 12808 tgcnp 12809 lmconst 12816 cnntr 12825 lmss 12846 txdis 12877 txlm 12879 blbas 13033 metss 13094 metcnp3 13111 iswomni0 13890 |
Copyright terms: Public domain | W3C validator |