| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralrimdva | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.) |
| Ref | Expression |
|---|---|
| ralrimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralrimdva | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimdva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| 3 | 2 | com23 78 | . 2 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
| 4 | 3 | ralrimdv 2585 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2176 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 |
| This theorem is referenced by: ralxfrd 4510 isoselem 5891 isosolem 5895 findcard 6987 nnsub 9077 supinfneg 9718 infsupneg 9719 ublbneg 9736 expnlbnd2 10812 cau3lem 11458 climshftlemg 11646 subcn2 11655 serf0 11696 sqrt2irr 12517 pclemub 12643 prmpwdvds 12711 grpinveu 13403 dfgrp3mlem 13463 issubg4m 13562 tgcn 14713 tgcnp 14714 lmconst 14721 cnntr 14730 lmss 14751 txdis 14782 txlm 14784 blbas 14938 metss 14999 metcnp3 15016 iswomni0 16027 |
| Copyright terms: Public domain | W3C validator |