ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimdva GIF version

Theorem ralrimdva 2577
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.)
Hypothesis
Ref Expression
ralrimdva.1 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
ralrimdva (𝜑 → (𝜓 → ∀𝑥𝐴 𝜒))
Distinct variable groups:   𝜑,𝑥   𝜓,𝑥
Allowed substitution hints:   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem ralrimdva
StepHypRef Expression
1 ralrimdva.1 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
21ex 115 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
32com23 78 . 2 (𝜑 → (𝜓 → (𝑥𝐴𝜒)))
43ralrimdv 2576 1 (𝜑 → (𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480
This theorem is referenced by:  ralxfrd  4498  isoselem  5870  isosolem  5874  findcard  6958  nnsub  9046  supinfneg  9686  infsupneg  9687  ublbneg  9704  expnlbnd2  10774  cau3lem  11296  climshftlemg  11484  subcn2  11493  serf0  11534  sqrt2irr  12355  pclemub  12481  prmpwdvds  12549  grpinveu  13240  dfgrp3mlem  13300  issubg4m  13399  tgcn  14528  tgcnp  14529  lmconst  14536  cnntr  14545  lmss  14566  txdis  14597  txlm  14599  blbas  14753  metss  14814  metcnp3  14831  iswomni0  15782
  Copyright terms: Public domain W3C validator