ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimdva GIF version

Theorem ralrimdva 2577
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.)
Hypothesis
Ref Expression
ralrimdva.1 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
ralrimdva (𝜑 → (𝜓 → ∀𝑥𝐴 𝜒))
Distinct variable groups:   𝜑,𝑥   𝜓,𝑥
Allowed substitution hints:   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem ralrimdva
StepHypRef Expression
1 ralrimdva.1 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
21ex 115 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
32com23 78 . 2 (𝜑 → (𝜓 → (𝑥𝐴𝜒)))
43ralrimdv 2576 1 (𝜑 → (𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480
This theorem is referenced by:  ralxfrd  4497  isoselem  5867  isosolem  5871  findcard  6949  nnsub  9029  supinfneg  9669  infsupneg  9670  ublbneg  9687  expnlbnd2  10757  cau3lem  11279  climshftlemg  11467  subcn2  11476  serf0  11517  sqrt2irr  12330  pclemub  12456  prmpwdvds  12524  grpinveu  13170  dfgrp3mlem  13230  issubg4m  13323  tgcn  14444  tgcnp  14445  lmconst  14452  cnntr  14461  lmss  14482  txdis  14513  txlm  14515  blbas  14669  metss  14730  metcnp3  14747  iswomni0  15695
  Copyright terms: Public domain W3C validator