| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralrimdva | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.) |
| Ref | Expression |
|---|---|
| ralrimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralrimdva | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimdva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| 3 | 2 | com23 78 | . 2 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
| 4 | 3 | ralrimdv 2609 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 |
| This theorem is referenced by: ralxfrd 4553 isoselem 5944 isosolem 5948 findcard 7050 nnsub 9149 supinfneg 9790 infsupneg 9791 ublbneg 9808 expnlbnd2 10887 cau3lem 11625 climshftlemg 11813 subcn2 11822 serf0 11863 sqrt2irr 12684 pclemub 12810 prmpwdvds 12878 grpinveu 13571 dfgrp3mlem 13631 issubg4m 13730 tgcn 14882 tgcnp 14883 lmconst 14890 cnntr 14899 lmss 14920 txdis 14951 txlm 14953 blbas 15107 metss 15168 metcnp3 15185 iswomni0 16419 |
| Copyright terms: Public domain | W3C validator |