ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimdva GIF version

Theorem ralrimdva 2574
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.)
Hypothesis
Ref Expression
ralrimdva.1 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
ralrimdva (𝜑 → (𝜓 → ∀𝑥𝐴 𝜒))
Distinct variable groups:   𝜑,𝑥   𝜓,𝑥
Allowed substitution hints:   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem ralrimdva
StepHypRef Expression
1 ralrimdva.1 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
21ex 115 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
32com23 78 . 2 (𝜑 → (𝜓 → (𝑥𝐴𝜒)))
43ralrimdv 2573 1 (𝜑 → (𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  wral 2472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-ral 2477
This theorem is referenced by:  ralxfrd  4493  isoselem  5863  isosolem  5867  findcard  6944  nnsub  9021  supinfneg  9660  infsupneg  9661  ublbneg  9678  expnlbnd2  10736  cau3lem  11258  climshftlemg  11445  subcn2  11454  serf0  11495  sqrt2irr  12300  pclemub  12425  prmpwdvds  12493  grpinveu  13110  dfgrp3mlem  13170  issubg4m  13263  tgcn  14376  tgcnp  14377  lmconst  14384  cnntr  14393  lmss  14414  txdis  14445  txlm  14447  blbas  14601  metss  14662  metcnp3  14679  iswomni0  15541
  Copyright terms: Public domain W3C validator