| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > readdcli | GIF version | ||
| Description: Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| recni.1 | ⊢ 𝐴 ∈ ℝ |
| axri.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| readdcli | ⊢ (𝐴 + 𝐵) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | readdcl 8133 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 + 𝐵) ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 (class class class)co 6007 ℝcr 8006 + caddc 8010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addrcl 8104 |
| This theorem is referenced by: resubcli 8417 eqneg 8887 2re 9188 3re 9192 4re 9195 5re 9197 6re 9199 7re 9201 8re 9203 9re 9205 numltc 9611 ef01bndlem 12275 ex-fl 16113 |
| Copyright terms: Public domain | W3C validator |