Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2re | GIF version |
Description: The number 2 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
2re | ⊢ 2 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8937 | . 2 ⊢ 2 = (1 + 1) | |
2 | 1re 7919 | . . 3 ⊢ 1 ∈ ℝ | |
3 | 2, 2 | readdcli 7933 | . 2 ⊢ (1 + 1) ∈ ℝ |
4 | 1, 3 | eqeltri 2243 | 1 ⊢ 2 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 (class class class)co 5853 ℝcr 7773 1c1 7775 + caddc 7777 2c2 8929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 df-2 8937 |
This theorem is referenced by: 2cn 8949 3re 8952 2ne0 8970 2ap0 8971 3pos 8972 2lt3 9048 1lt3 9049 2lt4 9051 1lt4 9052 2lt5 9055 2lt6 9060 1lt6 9061 2lt7 9066 1lt7 9067 2lt8 9073 1lt8 9074 2lt9 9081 1lt9 9082 1ap2 9085 1le2 9086 2rene0 9088 halfre 9091 halfgt0 9093 halflt1 9095 rehalfcl 9105 halfpos2 9108 halfnneg2 9110 addltmul 9114 nominpos 9115 avglt1 9116 avglt2 9117 div4p1lem1div2 9131 nn0lele2xi 9186 nn0ge2m1nn 9195 halfnz 9308 3halfnz 9309 2lt10 9480 1lt10 9481 eluz4eluz2 9526 uzuzle23 9530 uz3m2nn 9532 2rp 9615 xleaddadd 9844 fztpval 10039 fz0to4untppr 10080 fzo0to42pr 10176 qbtwnrelemcalc 10212 qbtwnre 10213 2tnp1ge0ge0 10257 flhalf 10258 fldiv4p1lem1div2 10261 mulp1mod1 10321 expubnd 10533 nn0opthlem2d 10655 faclbnd2 10676 4bc2eq6 10708 cvg1nlemres 10949 resqrexlemover 10974 resqrexlemga 10987 sqrt4 11011 sqrt2gt1lt2 11013 abstri 11068 amgm2 11082 maxabslemlub 11171 maxltsup 11182 bdtrilem 11202 efcllemp 11621 efcllem 11622 ege2le3 11634 ef01bndlem 11719 cos01bnd 11721 cos2bnd 11723 cos01gt0 11725 sin02gt0 11726 sincos2sgn 11728 sin4lt0 11729 cos12dec 11730 eirraplem 11739 egt2lt3 11742 epos 11743 ene1 11747 eap1 11748 oexpneg 11836 oddge22np1 11840 evennn02n 11841 evennn2n 11842 nn0ehalf 11862 nno 11865 nn0o 11866 nn0oddm1d2 11868 nnoddm1d2 11869 flodddiv4t2lthalf 11896 6gcd4e2 11950 ncoprmgcdne1b 12043 prmdc 12084 3lcm2e6 12114 sqrt2irrlem 12115 sqrt2re 12117 sqrt2irraplemnn 12133 sqrt2irrap 12134 plusgndxnmulrndx 12531 bl2in 13197 reeff1o 13488 cosz12 13495 sin0pilem1 13496 sin0pilem2 13497 pilem3 13498 pipos 13503 sinhalfpilem 13506 sincosq1lem 13540 sincosq4sgn 13544 sinq12gt0 13545 cosq23lt0 13548 coseq00topi 13550 coseq0negpitopi 13551 tangtx 13553 sincos4thpi 13555 tan4thpi 13556 sincos6thpi 13557 cosordlem 13564 cosq34lt1 13565 cos02pilt1 13566 cos0pilt1 13567 2logb9irr 13683 2logb3irr 13685 2logb9irrALT 13686 sqrt2cxp2logb9e3 13687 2logb9irrap 13689 lgslem1 13695 lgsdirprm 13729 ex-fl 13760 taupi 14102 |
Copyright terms: Public domain | W3C validator |