Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2re | GIF version |
Description: The number 2 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
2re | ⊢ 2 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8916 | . 2 ⊢ 2 = (1 + 1) | |
2 | 1re 7898 | . . 3 ⊢ 1 ∈ ℝ | |
3 | 2, 2 | readdcli 7912 | . 2 ⊢ (1 + 1) ∈ ℝ |
4 | 1, 3 | eqeltri 2239 | 1 ⊢ 2 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 (class class class)co 5842 ℝcr 7752 1c1 7754 + caddc 7756 2c2 8908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 df-2 8916 |
This theorem is referenced by: 2cn 8928 3re 8931 2ne0 8949 2ap0 8950 3pos 8951 2lt3 9027 1lt3 9028 2lt4 9030 1lt4 9031 2lt5 9034 2lt6 9039 1lt6 9040 2lt7 9045 1lt7 9046 2lt8 9052 1lt8 9053 2lt9 9060 1lt9 9061 1ap2 9064 1le2 9065 2rene0 9067 halfre 9070 halfgt0 9072 halflt1 9074 rehalfcl 9084 halfpos2 9087 halfnneg2 9089 addltmul 9093 nominpos 9094 avglt1 9095 avglt2 9096 div4p1lem1div2 9110 nn0lele2xi 9165 nn0ge2m1nn 9174 halfnz 9287 3halfnz 9288 2lt10 9459 1lt10 9460 eluz4eluz2 9505 uzuzle23 9509 uz3m2nn 9511 2rp 9594 xleaddadd 9823 fztpval 10018 fz0to4untppr 10059 fzo0to42pr 10155 qbtwnrelemcalc 10191 qbtwnre 10192 2tnp1ge0ge0 10236 flhalf 10237 fldiv4p1lem1div2 10240 mulp1mod1 10300 expubnd 10512 nn0opthlem2d 10634 faclbnd2 10655 4bc2eq6 10687 cvg1nlemres 10927 resqrexlemover 10952 resqrexlemga 10965 sqrt4 10989 sqrt2gt1lt2 10991 abstri 11046 amgm2 11060 maxabslemlub 11149 maxltsup 11160 bdtrilem 11180 efcllemp 11599 efcllem 11600 ege2le3 11612 ef01bndlem 11697 cos01bnd 11699 cos2bnd 11701 cos01gt0 11703 sin02gt0 11704 sincos2sgn 11706 sin4lt0 11707 cos12dec 11708 eirraplem 11717 egt2lt3 11720 epos 11721 ene1 11725 eap1 11726 oexpneg 11814 oddge22np1 11818 evennn02n 11819 evennn2n 11820 nn0ehalf 11840 nno 11843 nn0o 11844 nn0oddm1d2 11846 nnoddm1d2 11847 flodddiv4t2lthalf 11874 6gcd4e2 11928 ncoprmgcdne1b 12021 prmdc 12062 3lcm2e6 12092 sqrt2irrlem 12093 sqrt2re 12095 sqrt2irraplemnn 12111 sqrt2irrap 12112 plusgndxnmulrndx 12508 bl2in 13043 reeff1o 13334 cosz12 13341 sin0pilem1 13342 sin0pilem2 13343 pilem3 13344 pipos 13349 sinhalfpilem 13352 sincosq1lem 13386 sincosq4sgn 13390 sinq12gt0 13391 cosq23lt0 13394 coseq00topi 13396 coseq0negpitopi 13397 tangtx 13399 sincos4thpi 13401 tan4thpi 13402 sincos6thpi 13403 cosordlem 13410 cosq34lt1 13411 cos02pilt1 13412 cos0pilt1 13413 2logb9irr 13529 2logb3irr 13531 2logb9irrALT 13532 sqrt2cxp2logb9e3 13533 2logb9irrap 13535 lgslem1 13541 lgsdirprm 13575 ex-fl 13606 taupi 13949 |
Copyright terms: Public domain | W3C validator |