![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2re | GIF version |
Description: The number 2 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
2re | ⊢ 2 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8683 | . 2 ⊢ 2 = (1 + 1) | |
2 | 1re 7683 | . . 3 ⊢ 1 ∈ ℝ | |
3 | 2, 2 | readdcli 7697 | . 2 ⊢ (1 + 1) ∈ ℝ |
4 | 1, 3 | eqeltri 2185 | 1 ⊢ 2 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1461 (class class class)co 5726 ℝcr 7540 1c1 7542 + caddc 7544 2c2 8675 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1404 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-4 1468 ax-17 1487 ax-ial 1495 ax-ext 2095 ax-1re 7633 ax-addrcl 7636 |
This theorem depends on definitions: df-bi 116 df-cleq 2106 df-clel 2109 df-2 8683 |
This theorem is referenced by: 2cn 8695 3re 8698 2ne0 8716 2ap0 8717 3pos 8718 2lt3 8788 1lt3 8789 2lt4 8791 1lt4 8792 2lt5 8795 2lt6 8800 1lt6 8801 2lt7 8806 1lt7 8807 2lt8 8813 1lt8 8814 2lt9 8821 1lt9 8822 1ap2 8825 1le2 8826 2rene0 8828 halfre 8831 halfgt0 8833 halflt1 8835 rehalfcl 8845 halfpos2 8848 halfnneg2 8850 addltmul 8854 nominpos 8855 avglt1 8856 avglt2 8857 div4p1lem1div2 8871 nn0lele2xi 8926 nn0ge2m1nn 8935 halfnz 9045 3halfnz 9046 2lt10 9217 1lt10 9218 uzuzle23 9262 uz3m2nn 9264 2rp 9342 xleaddadd 9557 fztpval 9750 fzo0to42pr 9884 qbtwnrelemcalc 9920 qbtwnre 9921 2tnp1ge0ge0 9961 flhalf 9962 fldiv4p1lem1div2 9965 mulp1mod1 10025 expubnd 10237 nn0opthlem2d 10354 faclbnd2 10375 4bc2eq6 10407 cvg1nlemres 10643 resqrexlemover 10668 resqrexlemga 10681 sqrt4 10705 sqrt2gt1lt2 10707 abstri 10762 amgm2 10776 maxabslemlub 10865 maxltsup 10876 bdtrilem 10896 efcllemp 11209 efcllem 11210 ege2le3 11222 ef01bndlem 11308 cos01bnd 11310 cos2bnd 11312 cos01gt0 11314 sin02gt0 11315 sincos2sgn 11317 sin4lt0 11318 eirraplem 11325 egt2lt3 11328 epos 11329 ene1 11333 eap1 11334 oexpneg 11416 oddge22np1 11420 evennn02n 11421 evennn2n 11422 nn0ehalf 11442 nno 11445 nn0o 11446 nn0oddm1d2 11448 nnoddm1d2 11449 flodddiv4t2lthalf 11476 6gcd4e2 11523 ncoprmgcdne1b 11610 3lcm2e6 11678 sqrt2irrlem 11679 sqrt2re 11681 sqrt2irraplemnn 11696 sqrt2irrap 11697 plusgndxnmulrndx 11909 bl2in 12386 ex-fl 12621 |
Copyright terms: Public domain | W3C validator |