![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > numltc | GIF version |
Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numlt.1 | ⊢ 𝑇 ∈ ℕ |
numlt.2 | ⊢ 𝐴 ∈ ℕ0 |
numlt.3 | ⊢ 𝐵 ∈ ℕ0 |
numltc.3 | ⊢ 𝐶 ∈ ℕ0 |
numltc.4 | ⊢ 𝐷 ∈ ℕ0 |
numltc.5 | ⊢ 𝐶 < 𝑇 |
numltc.6 | ⊢ 𝐴 < 𝐵 |
Ref | Expression |
---|---|
numltc | ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numlt.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ | |
2 | numlt.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
3 | numltc.3 | . . . . 5 ⊢ 𝐶 ∈ ℕ0 | |
4 | numltc.5 | . . . . 5 ⊢ 𝐶 < 𝑇 | |
5 | 1, 2, 3, 1, 4 | numlt 9472 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐴) + 𝑇) |
6 | 1 | nnrei 8991 | . . . . . . 7 ⊢ 𝑇 ∈ ℝ |
7 | 6 | recni 8031 | . . . . . 6 ⊢ 𝑇 ∈ ℂ |
8 | 2 | nn0rei 9251 | . . . . . . 7 ⊢ 𝐴 ∈ ℝ |
9 | 8 | recni 8031 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
10 | ax-1cn 7965 | . . . . . 6 ⊢ 1 ∈ ℂ | |
11 | 7, 9, 10 | adddii 8029 | . . . . 5 ⊢ (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + (𝑇 · 1)) |
12 | 7 | mulid1i 8021 | . . . . . 6 ⊢ (𝑇 · 1) = 𝑇 |
13 | 12 | oveq2i 5929 | . . . . 5 ⊢ ((𝑇 · 𝐴) + (𝑇 · 1)) = ((𝑇 · 𝐴) + 𝑇) |
14 | 11, 13 | eqtri 2214 | . . . 4 ⊢ (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + 𝑇) |
15 | 5, 14 | breqtrri 4056 | . . 3 ⊢ ((𝑇 · 𝐴) + 𝐶) < (𝑇 · (𝐴 + 1)) |
16 | numltc.6 | . . . . 5 ⊢ 𝐴 < 𝐵 | |
17 | numlt.3 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
18 | nn0ltp1le 9379 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) | |
19 | 2, 17, 18 | mp2an 426 | . . . . 5 ⊢ (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵) |
20 | 16, 19 | mpbi 145 | . . . 4 ⊢ (𝐴 + 1) ≤ 𝐵 |
21 | 1 | nngt0i 9012 | . . . . 5 ⊢ 0 < 𝑇 |
22 | peano2re 8155 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
23 | 8, 22 | ax-mp 5 | . . . . . 6 ⊢ (𝐴 + 1) ∈ ℝ |
24 | 17 | nn0rei 9251 | . . . . . 6 ⊢ 𝐵 ∈ ℝ |
25 | 23, 24, 6 | lemul2i 8944 | . . . . 5 ⊢ (0 < 𝑇 → ((𝐴 + 1) ≤ 𝐵 ↔ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵))) |
26 | 21, 25 | ax-mp 5 | . . . 4 ⊢ ((𝐴 + 1) ≤ 𝐵 ↔ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)) |
27 | 20, 26 | mpbi 145 | . . 3 ⊢ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵) |
28 | 6, 8 | remulcli 8033 | . . . . 5 ⊢ (𝑇 · 𝐴) ∈ ℝ |
29 | 3 | nn0rei 9251 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
30 | 28, 29 | readdcli 8032 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐶) ∈ ℝ |
31 | 6, 23 | remulcli 8033 | . . . 4 ⊢ (𝑇 · (𝐴 + 1)) ∈ ℝ |
32 | 6, 24 | remulcli 8033 | . . . 4 ⊢ (𝑇 · 𝐵) ∈ ℝ |
33 | 30, 31, 32 | ltletri 8126 | . . 3 ⊢ ((((𝑇 · 𝐴) + 𝐶) < (𝑇 · (𝐴 + 1)) ∧ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)) → ((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵)) |
34 | 15, 27, 33 | mp2an 426 | . 2 ⊢ ((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵) |
35 | numltc.4 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
36 | 32, 35 | nn0addge1i 9288 | . 2 ⊢ (𝑇 · 𝐵) ≤ ((𝑇 · 𝐵) + 𝐷) |
37 | 35 | nn0rei 9251 | . . . 4 ⊢ 𝐷 ∈ ℝ |
38 | 32, 37 | readdcli 8032 | . . 3 ⊢ ((𝑇 · 𝐵) + 𝐷) ∈ ℝ |
39 | 30, 32, 38 | ltletri 8126 | . 2 ⊢ ((((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵) ∧ (𝑇 · 𝐵) ≤ ((𝑇 · 𝐵) + 𝐷)) → ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷)) |
40 | 34, 36, 39 | mp2an 426 | 1 ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 ℝcr 7871 0cc0 7872 1c1 7873 + caddc 7875 · cmul 7877 < clt 8054 ≤ cle 8055 ℕcn 8982 ℕ0cn0 9240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 |
This theorem is referenced by: decltc 9476 numlti 9484 |
Copyright terms: Public domain | W3C validator |