Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > numltc | GIF version |
Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numlt.1 | ⊢ 𝑇 ∈ ℕ |
numlt.2 | ⊢ 𝐴 ∈ ℕ0 |
numlt.3 | ⊢ 𝐵 ∈ ℕ0 |
numltc.3 | ⊢ 𝐶 ∈ ℕ0 |
numltc.4 | ⊢ 𝐷 ∈ ℕ0 |
numltc.5 | ⊢ 𝐶 < 𝑇 |
numltc.6 | ⊢ 𝐴 < 𝐵 |
Ref | Expression |
---|---|
numltc | ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numlt.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ | |
2 | numlt.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
3 | numltc.3 | . . . . 5 ⊢ 𝐶 ∈ ℕ0 | |
4 | numltc.5 | . . . . 5 ⊢ 𝐶 < 𝑇 | |
5 | 1, 2, 3, 1, 4 | numlt 9313 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐴) + 𝑇) |
6 | 1 | nnrei 8836 | . . . . . . 7 ⊢ 𝑇 ∈ ℝ |
7 | 6 | recni 7884 | . . . . . 6 ⊢ 𝑇 ∈ ℂ |
8 | 2 | nn0rei 9095 | . . . . . . 7 ⊢ 𝐴 ∈ ℝ |
9 | 8 | recni 7884 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
10 | ax-1cn 7819 | . . . . . 6 ⊢ 1 ∈ ℂ | |
11 | 7, 9, 10 | adddii 7882 | . . . . 5 ⊢ (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + (𝑇 · 1)) |
12 | 7 | mulid1i 7874 | . . . . . 6 ⊢ (𝑇 · 1) = 𝑇 |
13 | 12 | oveq2i 5832 | . . . . 5 ⊢ ((𝑇 · 𝐴) + (𝑇 · 1)) = ((𝑇 · 𝐴) + 𝑇) |
14 | 11, 13 | eqtri 2178 | . . . 4 ⊢ (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + 𝑇) |
15 | 5, 14 | breqtrri 3991 | . . 3 ⊢ ((𝑇 · 𝐴) + 𝐶) < (𝑇 · (𝐴 + 1)) |
16 | numltc.6 | . . . . 5 ⊢ 𝐴 < 𝐵 | |
17 | numlt.3 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
18 | nn0ltp1le 9223 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) | |
19 | 2, 17, 18 | mp2an 423 | . . . . 5 ⊢ (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵) |
20 | 16, 19 | mpbi 144 | . . . 4 ⊢ (𝐴 + 1) ≤ 𝐵 |
21 | 1 | nngt0i 8857 | . . . . 5 ⊢ 0 < 𝑇 |
22 | peano2re 8005 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
23 | 8, 22 | ax-mp 5 | . . . . . 6 ⊢ (𝐴 + 1) ∈ ℝ |
24 | 17 | nn0rei 9095 | . . . . . 6 ⊢ 𝐵 ∈ ℝ |
25 | 23, 24, 6 | lemul2i 8790 | . . . . 5 ⊢ (0 < 𝑇 → ((𝐴 + 1) ≤ 𝐵 ↔ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵))) |
26 | 21, 25 | ax-mp 5 | . . . 4 ⊢ ((𝐴 + 1) ≤ 𝐵 ↔ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)) |
27 | 20, 26 | mpbi 144 | . . 3 ⊢ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵) |
28 | 6, 8 | remulcli 7886 | . . . . 5 ⊢ (𝑇 · 𝐴) ∈ ℝ |
29 | 3 | nn0rei 9095 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
30 | 28, 29 | readdcli 7885 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐶) ∈ ℝ |
31 | 6, 23 | remulcli 7886 | . . . 4 ⊢ (𝑇 · (𝐴 + 1)) ∈ ℝ |
32 | 6, 24 | remulcli 7886 | . . . 4 ⊢ (𝑇 · 𝐵) ∈ ℝ |
33 | 30, 31, 32 | ltletri 7977 | . . 3 ⊢ ((((𝑇 · 𝐴) + 𝐶) < (𝑇 · (𝐴 + 1)) ∧ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)) → ((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵)) |
34 | 15, 27, 33 | mp2an 423 | . 2 ⊢ ((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵) |
35 | numltc.4 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
36 | 32, 35 | nn0addge1i 9132 | . 2 ⊢ (𝑇 · 𝐵) ≤ ((𝑇 · 𝐵) + 𝐷) |
37 | 35 | nn0rei 9095 | . . . 4 ⊢ 𝐷 ∈ ℝ |
38 | 32, 37 | readdcli 7885 | . . 3 ⊢ ((𝑇 · 𝐵) + 𝐷) ∈ ℝ |
39 | 30, 32, 38 | ltletri 7977 | . 2 ⊢ ((((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵) ∧ (𝑇 · 𝐵) ≤ ((𝑇 · 𝐵) + 𝐷)) → ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷)) |
40 | 34, 36, 39 | mp2an 423 | 1 ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 2128 class class class wbr 3965 (class class class)co 5821 ℝcr 7725 0cc0 7726 1c1 7727 + caddc 7729 · cmul 7731 < clt 7906 ≤ cle 7907 ℕcn 8827 ℕ0cn0 9084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-mulrcl 7825 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-1rid 7833 ax-0id 7834 ax-rnegex 7835 ax-precex 7836 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-ltadd 7842 ax-pre-mulgt0 7843 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-iota 5134 df-fun 5171 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-inn 8828 df-n0 9085 df-z 9162 |
This theorem is referenced by: decltc 9317 numlti 9325 |
Copyright terms: Public domain | W3C validator |