| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > numltc | GIF version | ||
| Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| numlt.1 | ⊢ 𝑇 ∈ ℕ |
| numlt.2 | ⊢ 𝐴 ∈ ℕ0 |
| numlt.3 | ⊢ 𝐵 ∈ ℕ0 |
| numltc.3 | ⊢ 𝐶 ∈ ℕ0 |
| numltc.4 | ⊢ 𝐷 ∈ ℕ0 |
| numltc.5 | ⊢ 𝐶 < 𝑇 |
| numltc.6 | ⊢ 𝐴 < 𝐵 |
| Ref | Expression |
|---|---|
| numltc | ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numlt.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ | |
| 2 | numlt.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | numltc.3 | . . . . 5 ⊢ 𝐶 ∈ ℕ0 | |
| 4 | numltc.5 | . . . . 5 ⊢ 𝐶 < 𝑇 | |
| 5 | 1, 2, 3, 1, 4 | numlt 9481 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐴) + 𝑇) |
| 6 | 1 | nnrei 8999 | . . . . . . 7 ⊢ 𝑇 ∈ ℝ |
| 7 | 6 | recni 8038 | . . . . . 6 ⊢ 𝑇 ∈ ℂ |
| 8 | 2 | nn0rei 9260 | . . . . . . 7 ⊢ 𝐴 ∈ ℝ |
| 9 | 8 | recni 8038 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
| 10 | ax-1cn 7972 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 11 | 7, 9, 10 | adddii 8036 | . . . . 5 ⊢ (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + (𝑇 · 1)) |
| 12 | 7 | mulridi 8028 | . . . . . 6 ⊢ (𝑇 · 1) = 𝑇 |
| 13 | 12 | oveq2i 5933 | . . . . 5 ⊢ ((𝑇 · 𝐴) + (𝑇 · 1)) = ((𝑇 · 𝐴) + 𝑇) |
| 14 | 11, 13 | eqtri 2217 | . . . 4 ⊢ (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + 𝑇) |
| 15 | 5, 14 | breqtrri 4060 | . . 3 ⊢ ((𝑇 · 𝐴) + 𝐶) < (𝑇 · (𝐴 + 1)) |
| 16 | numltc.6 | . . . . 5 ⊢ 𝐴 < 𝐵 | |
| 17 | numlt.3 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
| 18 | nn0ltp1le 9388 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) | |
| 19 | 2, 17, 18 | mp2an 426 | . . . . 5 ⊢ (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵) |
| 20 | 16, 19 | mpbi 145 | . . . 4 ⊢ (𝐴 + 1) ≤ 𝐵 |
| 21 | 1 | nngt0i 9020 | . . . . 5 ⊢ 0 < 𝑇 |
| 22 | peano2re 8162 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
| 23 | 8, 22 | ax-mp 5 | . . . . . 6 ⊢ (𝐴 + 1) ∈ ℝ |
| 24 | 17 | nn0rei 9260 | . . . . . 6 ⊢ 𝐵 ∈ ℝ |
| 25 | 23, 24, 6 | lemul2i 8952 | . . . . 5 ⊢ (0 < 𝑇 → ((𝐴 + 1) ≤ 𝐵 ↔ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵))) |
| 26 | 21, 25 | ax-mp 5 | . . . 4 ⊢ ((𝐴 + 1) ≤ 𝐵 ↔ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)) |
| 27 | 20, 26 | mpbi 145 | . . 3 ⊢ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵) |
| 28 | 6, 8 | remulcli 8040 | . . . . 5 ⊢ (𝑇 · 𝐴) ∈ ℝ |
| 29 | 3 | nn0rei 9260 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
| 30 | 28, 29 | readdcli 8039 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐶) ∈ ℝ |
| 31 | 6, 23 | remulcli 8040 | . . . 4 ⊢ (𝑇 · (𝐴 + 1)) ∈ ℝ |
| 32 | 6, 24 | remulcli 8040 | . . . 4 ⊢ (𝑇 · 𝐵) ∈ ℝ |
| 33 | 30, 31, 32 | ltletri 8133 | . . 3 ⊢ ((((𝑇 · 𝐴) + 𝐶) < (𝑇 · (𝐴 + 1)) ∧ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)) → ((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵)) |
| 34 | 15, 27, 33 | mp2an 426 | . 2 ⊢ ((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵) |
| 35 | numltc.4 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 36 | 32, 35 | nn0addge1i 9297 | . 2 ⊢ (𝑇 · 𝐵) ≤ ((𝑇 · 𝐵) + 𝐷) |
| 37 | 35 | nn0rei 9260 | . . . 4 ⊢ 𝐷 ∈ ℝ |
| 38 | 32, 37 | readdcli 8039 | . . 3 ⊢ ((𝑇 · 𝐵) + 𝐷) ∈ ℝ |
| 39 | 30, 32, 38 | ltletri 8133 | . 2 ⊢ ((((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵) ∧ (𝑇 · 𝐵) ≤ ((𝑇 · 𝐵) + 𝐷)) → ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷)) |
| 40 | 34, 36, 39 | mp2an 426 | 1 ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2167 class class class wbr 4033 (class class class)co 5922 ℝcr 7878 0cc0 7879 1c1 7880 + caddc 7882 · cmul 7884 < clt 8061 ≤ cle 8062 ℕcn 8990 ℕ0cn0 9249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 |
| This theorem is referenced by: decltc 9485 numlti 9493 |
| Copyright terms: Public domain | W3C validator |