ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numltc GIF version

Theorem numltc 9207
Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numlt.1 𝑇 ∈ ℕ
numlt.2 𝐴 ∈ ℕ0
numlt.3 𝐵 ∈ ℕ0
numltc.3 𝐶 ∈ ℕ0
numltc.4 𝐷 ∈ ℕ0
numltc.5 𝐶 < 𝑇
numltc.6 𝐴 < 𝐵
Assertion
Ref Expression
numltc ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷)

Proof of Theorem numltc
StepHypRef Expression
1 numlt.1 . . . . 5 𝑇 ∈ ℕ
2 numlt.2 . . . . 5 𝐴 ∈ ℕ0
3 numltc.3 . . . . 5 𝐶 ∈ ℕ0
4 numltc.5 . . . . 5 𝐶 < 𝑇
51, 2, 3, 1, 4numlt 9206 . . . 4 ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐴) + 𝑇)
61nnrei 8729 . . . . . . 7 𝑇 ∈ ℝ
76recni 7778 . . . . . 6 𝑇 ∈ ℂ
82nn0rei 8988 . . . . . . 7 𝐴 ∈ ℝ
98recni 7778 . . . . . 6 𝐴 ∈ ℂ
10 ax-1cn 7713 . . . . . 6 1 ∈ ℂ
117, 9, 10adddii 7776 . . . . 5 (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + (𝑇 · 1))
127mulid1i 7768 . . . . . 6 (𝑇 · 1) = 𝑇
1312oveq2i 5785 . . . . 5 ((𝑇 · 𝐴) + (𝑇 · 1)) = ((𝑇 · 𝐴) + 𝑇)
1411, 13eqtri 2160 . . . 4 (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + 𝑇)
155, 14breqtrri 3955 . . 3 ((𝑇 · 𝐴) + 𝐶) < (𝑇 · (𝐴 + 1))
16 numltc.6 . . . . 5 𝐴 < 𝐵
17 numlt.3 . . . . . 6 𝐵 ∈ ℕ0
18 nn0ltp1le 9116 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵))
192, 17, 18mp2an 422 . . . . 5 (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)
2016, 19mpbi 144 . . . 4 (𝐴 + 1) ≤ 𝐵
211nngt0i 8750 . . . . 5 0 < 𝑇
22 peano2re 7898 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
238, 22ax-mp 5 . . . . . 6 (𝐴 + 1) ∈ ℝ
2417nn0rei 8988 . . . . . 6 𝐵 ∈ ℝ
2523, 24, 6lemul2i 8683 . . . . 5 (0 < 𝑇 → ((𝐴 + 1) ≤ 𝐵 ↔ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)))
2621, 25ax-mp 5 . . . 4 ((𝐴 + 1) ≤ 𝐵 ↔ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵))
2720, 26mpbi 144 . . 3 (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)
286, 8remulcli 7780 . . . . 5 (𝑇 · 𝐴) ∈ ℝ
293nn0rei 8988 . . . . 5 𝐶 ∈ ℝ
3028, 29readdcli 7779 . . . 4 ((𝑇 · 𝐴) + 𝐶) ∈ ℝ
316, 23remulcli 7780 . . . 4 (𝑇 · (𝐴 + 1)) ∈ ℝ
326, 24remulcli 7780 . . . 4 (𝑇 · 𝐵) ∈ ℝ
3330, 31, 32ltletri 7870 . . 3 ((((𝑇 · 𝐴) + 𝐶) < (𝑇 · (𝐴 + 1)) ∧ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)) → ((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵))
3415, 27, 33mp2an 422 . 2 ((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵)
35 numltc.4 . . 3 𝐷 ∈ ℕ0
3632, 35nn0addge1i 9025 . 2 (𝑇 · 𝐵) ≤ ((𝑇 · 𝐵) + 𝐷)
3735nn0rei 8988 . . . 4 𝐷 ∈ ℝ
3832, 37readdcli 7779 . . 3 ((𝑇 · 𝐵) + 𝐷) ∈ ℝ
3930, 32, 38ltletri 7870 . 2 ((((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵) ∧ (𝑇 · 𝐵) ≤ ((𝑇 · 𝐵) + 𝐷)) → ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷))
4034, 36, 39mp2an 422 1 ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷)
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 1480   class class class wbr 3929  (class class class)co 5774  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625   < clt 7800  cle 7801  cn 8720  0cn0 8977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736  ax-pre-mulgt0 7737
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055
This theorem is referenced by:  decltc  9210  numlti  9218
  Copyright terms: Public domain W3C validator