Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recni | GIF version |
Description: A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
recni.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
recni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 7878 | . 2 ⊢ ℝ ⊆ ℂ | |
2 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
3 | 1, 2 | sselii 3150 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2146 ℂcc 7784 ℝcr 7785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-resscn 7878 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-in 3133 df-ss 3140 |
This theorem is referenced by: resubcli 8194 ltapii 8566 nncni 8900 2cn 8961 3cn 8965 4cn 8968 5cn 8970 6cn 8972 7cn 8974 8cn 8976 9cn 8978 halfcn 9104 8th4div3 9109 nn0cni 9159 numltc 9380 sqge0i 10574 lt2sqi 10575 le2sqi 10576 sq11i 10577 sqrtmsq2i 11110 0.999... 11495 ef01bndlem 11730 sin4lt0 11740 eirraplem 11750 eirr 11752 egt2lt3 11753 sqrt2irraplemnn 12144 picn 13759 sinhalfpilem 13763 cosneghalfpi 13770 sinhalfpip 13792 sinhalfpim 13793 coshalfpip 13794 coshalfpim 13795 sincosq1sgn 13798 sincosq2sgn 13799 sincosq3sgn 13800 sincosq4sgn 13801 cosq23lt0 13805 coseq00topi 13807 sincosq1eq 13811 sincos4thpi 13812 tan4thpi 13813 sincos6thpi 13814 2logb9irrALT 13943 taupi 14359 |
Copyright terms: Public domain | W3C validator |