| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recni | GIF version | ||
| Description: A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
| Ref | Expression |
|---|---|
| recni.1 | ⊢ 𝐴 ∈ ℝ |
| Ref | Expression |
|---|---|
| recni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 8079 | . 2 ⊢ ℝ ⊆ ℂ | |
| 2 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 3 | 1, 2 | sselii 3221 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ℂcc 7985 ℝcr 7986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8079 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: resubcli 8397 ltapii 8770 nncni 9108 2cn 9169 3cn 9173 4cn 9176 5cn 9178 6cn 9180 7cn 9182 8cn 9184 9cn 9186 halfcn 9313 8th4div3 9318 nn0cni 9369 numltc 9591 sqge0i 10835 lt2sqi 10836 le2sqi 10837 sq11i 10838 sqrtmsq2i 11632 0.999... 12018 ef01bndlem 12253 sin4lt0 12264 eirraplem 12274 eirr 12276 egt2lt3 12277 sqrt2irraplemnn 12687 modsubi 12928 picn 15446 sinhalfpilem 15450 cosneghalfpi 15457 sinhalfpip 15479 sinhalfpim 15480 coshalfpip 15481 coshalfpim 15482 sincosq1sgn 15485 sincosq2sgn 15486 sincosq3sgn 15487 sincosq4sgn 15488 cosq23lt0 15492 coseq00topi 15494 sincosq1eq 15498 sincos4thpi 15499 tan4thpi 15500 sincos6thpi 15501 2logb9irrALT 15633 taupi 16372 |
| Copyright terms: Public domain | W3C validator |