ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recni GIF version

Theorem recni 8033
Description: A real number is a complex number. (Contributed by NM, 1-Mar-1995.)
Hypothesis
Ref Expression
recni.1 𝐴 ∈ ℝ
Assertion
Ref Expression
recni 𝐴 ∈ ℂ

Proof of Theorem recni
StepHypRef Expression
1 ax-resscn 7966 . 2 ℝ ⊆ ℂ
2 recni.1 . 2 𝐴 ∈ ℝ
31, 2sselii 3177 1 𝐴 ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2164  cc 7872  cr 7873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7966
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3160  df-ss 3167
This theorem is referenced by:  resubcli  8284  ltapii  8656  nncni  8994  2cn  9055  3cn  9059  4cn  9062  5cn  9064  6cn  9066  7cn  9068  8cn  9070  9cn  9072  halfcn  9199  8th4div3  9204  nn0cni  9255  numltc  9476  sqge0i  10700  lt2sqi  10701  le2sqi  10702  sq11i  10703  sqrtmsq2i  11282  0.999...  11667  ef01bndlem  11902  sin4lt0  11913  eirraplem  11923  eirr  11925  egt2lt3  11926  sqrt2irraplemnn  12320  picn  14963  sinhalfpilem  14967  cosneghalfpi  14974  sinhalfpip  14996  sinhalfpim  14997  coshalfpip  14998  coshalfpim  14999  sincosq1sgn  15002  sincosq2sgn  15003  sincosq3sgn  15004  sincosq4sgn  15005  cosq23lt0  15009  coseq00topi  15011  sincosq1eq  15015  sincos4thpi  15016  tan4thpi  15017  sincos6thpi  15018  2logb9irrALT  15147  taupi  15633
  Copyright terms: Public domain W3C validator