| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recni | GIF version | ||
| Description: A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
| Ref | Expression |
|---|---|
| recni.1 | ⊢ 𝐴 ∈ ℝ |
| Ref | Expression |
|---|---|
| recni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 8030 | . 2 ⊢ ℝ ⊆ ℂ | |
| 2 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 3 | 1, 2 | sselii 3192 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ℂcc 7936 ℝcr 7937 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8030 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3174 df-ss 3181 |
| This theorem is referenced by: resubcli 8348 ltapii 8721 nncni 9059 2cn 9120 3cn 9124 4cn 9127 5cn 9129 6cn 9131 7cn 9133 8cn 9135 9cn 9137 halfcn 9264 8th4div3 9269 nn0cni 9320 numltc 9542 sqge0i 10784 lt2sqi 10785 le2sqi 10786 sq11i 10787 sqrtmsq2i 11496 0.999... 11882 ef01bndlem 12117 sin4lt0 12128 eirraplem 12138 eirr 12140 egt2lt3 12141 sqrt2irraplemnn 12551 modsubi 12792 picn 15309 sinhalfpilem 15313 cosneghalfpi 15320 sinhalfpip 15342 sinhalfpim 15343 coshalfpip 15344 coshalfpim 15345 sincosq1sgn 15348 sincosq2sgn 15349 sincosq3sgn 15350 sincosq4sgn 15351 cosq23lt0 15355 coseq00topi 15357 sincosq1eq 15361 sincos4thpi 15362 tan4thpi 15363 sincos6thpi 15364 2logb9irrALT 15496 taupi 16127 |
| Copyright terms: Public domain | W3C validator |