![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recni | GIF version |
Description: A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
recni.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
recni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 7966 | . 2 ⊢ ℝ ⊆ ℂ | |
2 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
3 | 1, 2 | sselii 3177 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ℂcc 7872 ℝcr 7873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: resubcli 8284 ltapii 8656 nncni 8994 2cn 9055 3cn 9059 4cn 9062 5cn 9064 6cn 9066 7cn 9068 8cn 9070 9cn 9072 halfcn 9199 8th4div3 9204 nn0cni 9255 numltc 9476 sqge0i 10700 lt2sqi 10701 le2sqi 10702 sq11i 10703 sqrtmsq2i 11282 0.999... 11667 ef01bndlem 11902 sin4lt0 11913 eirraplem 11923 eirr 11925 egt2lt3 11926 sqrt2irraplemnn 12320 picn 14963 sinhalfpilem 14967 cosneghalfpi 14974 sinhalfpip 14996 sinhalfpim 14997 coshalfpip 14998 coshalfpim 14999 sincosq1sgn 15002 sincosq2sgn 15003 sincosq3sgn 15004 sincosq4sgn 15005 cosq23lt0 15009 coseq00topi 15011 sincosq1eq 15015 sincos4thpi 15016 tan4thpi 15017 sincos6thpi 15018 2logb9irrALT 15147 taupi 15633 |
Copyright terms: Public domain | W3C validator |