Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recni | GIF version |
Description: A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
recni.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
recni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 7845 | . 2 ⊢ ℝ ⊆ ℂ | |
2 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
3 | 1, 2 | sselii 3139 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ℂcc 7751 ℝcr 7752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: resubcli 8161 ltapii 8533 nncni 8867 2cn 8928 3cn 8932 4cn 8935 5cn 8937 6cn 8939 7cn 8941 8cn 8943 9cn 8945 halfcn 9071 8th4div3 9076 nn0cni 9126 numltc 9347 sqge0i 10541 lt2sqi 10542 le2sqi 10543 sq11i 10544 sqrtmsq2i 11077 0.999... 11462 ef01bndlem 11697 sin4lt0 11707 eirraplem 11717 eirr 11719 egt2lt3 11720 sqrt2irraplemnn 12111 picn 13358 sinhalfpilem 13362 cosneghalfpi 13369 sinhalfpip 13391 sinhalfpim 13392 coshalfpip 13393 coshalfpim 13394 sincosq1sgn 13397 sincosq2sgn 13398 sincosq3sgn 13399 sincosq4sgn 13400 cosq23lt0 13404 coseq00topi 13406 sincosq1eq 13410 sincos4thpi 13411 tan4thpi 13412 sincos6thpi 13413 2logb9irrALT 13542 taupi 13959 |
Copyright terms: Public domain | W3C validator |