ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recni GIF version

Theorem recni 7911
Description: A real number is a complex number. (Contributed by NM, 1-Mar-1995.)
Hypothesis
Ref Expression
recni.1 𝐴 ∈ ℝ
Assertion
Ref Expression
recni 𝐴 ∈ ℂ

Proof of Theorem recni
StepHypRef Expression
1 ax-resscn 7845 . 2 ℝ ⊆ ℂ
2 recni.1 . 2 𝐴 ∈ ℝ
31, 2sselii 3139 1 𝐴 ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2136  cc 7751  cr 7752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  resubcli  8161  ltapii  8533  nncni  8867  2cn  8928  3cn  8932  4cn  8935  5cn  8937  6cn  8939  7cn  8941  8cn  8943  9cn  8945  halfcn  9071  8th4div3  9076  nn0cni  9126  numltc  9347  sqge0i  10541  lt2sqi  10542  le2sqi  10543  sq11i  10544  sqrtmsq2i  11077  0.999...  11462  ef01bndlem  11697  sin4lt0  11707  eirraplem  11717  eirr  11719  egt2lt3  11720  sqrt2irraplemnn  12111  picn  13358  sinhalfpilem  13362  cosneghalfpi  13369  sinhalfpip  13391  sinhalfpim  13392  coshalfpip  13393  coshalfpim  13394  sincosq1sgn  13397  sincosq2sgn  13398  sincosq3sgn  13399  sincosq4sgn  13400  cosq23lt0  13404  coseq00topi  13406  sincosq1eq  13410  sincos4thpi  13411  tan4thpi  13412  sincos6thpi  13413  2logb9irrALT  13542  taupi  13959
  Copyright terms: Public domain W3C validator