| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recni | GIF version | ||
| Description: A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
| Ref | Expression |
|---|---|
| recni.1 | ⊢ 𝐴 ∈ ℝ |
| Ref | Expression |
|---|---|
| recni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 7990 | . 2 ⊢ ℝ ⊆ ℂ | |
| 2 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 3 | 1, 2 | sselii 3181 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ℂcc 7896 ℝcr 7897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7990 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: resubcli 8308 ltapii 8681 nncni 9019 2cn 9080 3cn 9084 4cn 9087 5cn 9089 6cn 9091 7cn 9093 8cn 9095 9cn 9097 halfcn 9224 8th4div3 9229 nn0cni 9280 numltc 9501 sqge0i 10737 lt2sqi 10738 le2sqi 10739 sq11i 10740 sqrtmsq2i 11319 0.999... 11705 ef01bndlem 11940 sin4lt0 11951 eirraplem 11961 eirr 11963 egt2lt3 11964 sqrt2irraplemnn 12374 modsubi 12615 picn 15131 sinhalfpilem 15135 cosneghalfpi 15142 sinhalfpip 15164 sinhalfpim 15165 coshalfpip 15166 coshalfpim 15167 sincosq1sgn 15170 sincosq2sgn 15171 sincosq3sgn 15172 sincosq4sgn 15173 cosq23lt0 15177 coseq00topi 15179 sincosq1eq 15183 sincos4thpi 15184 tan4thpi 15185 sincos6thpi 15186 2logb9irrALT 15318 taupi 15830 |
| Copyright terms: Public domain | W3C validator |