| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recni | GIF version | ||
| Description: A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
| Ref | Expression |
|---|---|
| recni.1 | ⊢ 𝐴 ∈ ℝ |
| Ref | Expression |
|---|---|
| recni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 8099 | . 2 ⊢ ℝ ⊆ ℂ | |
| 2 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 3 | 1, 2 | sselii 3221 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ℂcc 8005 ℝcr 8006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8099 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: resubcli 8417 ltapii 8790 nncni 9128 2cn 9189 3cn 9193 4cn 9196 5cn 9198 6cn 9200 7cn 9202 8cn 9204 9cn 9206 halfcn 9333 8th4div3 9338 nn0cni 9389 numltc 9611 sqge0i 10856 lt2sqi 10857 le2sqi 10858 sq11i 10859 sqrtmsq2i 11654 0.999... 12040 ef01bndlem 12275 sin4lt0 12286 eirraplem 12296 eirr 12298 egt2lt3 12299 sqrt2irraplemnn 12709 modsubi 12950 picn 15469 sinhalfpilem 15473 cosneghalfpi 15480 sinhalfpip 15502 sinhalfpim 15503 coshalfpip 15504 coshalfpim 15505 sincosq1sgn 15508 sincosq2sgn 15509 sincosq3sgn 15510 sincosq4sgn 15511 cosq23lt0 15515 coseq00topi 15517 sincosq1eq 15521 sincos4thpi 15522 tan4thpi 15523 sincos6thpi 15524 2logb9irrALT 15656 taupi 16471 |
| Copyright terms: Public domain | W3C validator |