| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > recni | GIF version | ||
| Description: A real number is a complex number. (Contributed by NM, 1-Mar-1995.) | 
| Ref | Expression | 
|---|---|
| recni.1 | ⊢ 𝐴 ∈ ℝ | 
| Ref | Expression | 
|---|---|
| recni | ⊢ 𝐴 ∈ ℂ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-resscn 7971 | . 2 ⊢ ℝ ⊆ ℂ | |
| 2 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 3 | 1, 2 | sselii 3180 | 1 ⊢ 𝐴 ∈ ℂ | 
| Colors of variables: wff set class | 
| Syntax hints: ∈ wcel 2167 ℂcc 7877 ℝcr 7878 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: resubcli 8289 ltapii 8662 nncni 9000 2cn 9061 3cn 9065 4cn 9068 5cn 9070 6cn 9072 7cn 9074 8cn 9076 9cn 9078 halfcn 9205 8th4div3 9210 nn0cni 9261 numltc 9482 sqge0i 10718 lt2sqi 10719 le2sqi 10720 sq11i 10721 sqrtmsq2i 11300 0.999... 11686 ef01bndlem 11921 sin4lt0 11932 eirraplem 11942 eirr 11944 egt2lt3 11945 sqrt2irraplemnn 12347 modsubi 12588 picn 15023 sinhalfpilem 15027 cosneghalfpi 15034 sinhalfpip 15056 sinhalfpim 15057 coshalfpip 15058 coshalfpim 15059 sincosq1sgn 15062 sincosq2sgn 15063 sincosq3sgn 15064 sincosq4sgn 15065 cosq23lt0 15069 coseq00topi 15071 sincosq1eq 15075 sincos4thpi 15076 tan4thpi 15077 sincos6thpi 15078 2logb9irrALT 15210 taupi 15717 | 
| Copyright terms: Public domain | W3C validator |