ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-fl GIF version

Theorem ex-fl 15371
Description: Example for df-fl 10360. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-fl ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)

Proof of Theorem ex-fl
StepHypRef Expression
1 1re 8025 . . . 4 1 ∈ ℝ
2 3re 9064 . . . . 5 3 ∈ ℝ
32rehalfcli 9240 . . . 4 (3 / 2) ∈ ℝ
4 2cn 9061 . . . . . . 7 2 ∈ ℂ
54mullidi 8029 . . . . . 6 (1 · 2) = 2
6 2lt3 9161 . . . . . 6 2 < 3
75, 6eqbrtri 4054 . . . . 5 (1 · 2) < 3
8 2pos 9081 . . . . . 6 0 < 2
9 2re 9060 . . . . . . 7 2 ∈ ℝ
101, 2, 9ltmuldivi 8949 . . . . . 6 (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2)))
118, 10ax-mp 5 . . . . 5 ((1 · 2) < 3 ↔ 1 < (3 / 2))
127, 11mpbi 145 . . . 4 1 < (3 / 2)
131, 3, 12ltleii 8129 . . 3 1 ≤ (3 / 2)
14 3lt4 9163 . . . . . 6 3 < 4
15 2t2e4 9145 . . . . . 6 (2 · 2) = 4
1614, 15breqtrri 4060 . . . . 5 3 < (2 · 2)
179, 8pm3.2i 272 . . . . . 6 (2 ∈ ℝ ∧ 0 < 2)
18 ltdivmul 8903 . . . . . 6 ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2)))
192, 9, 17, 18mp3an 1348 . . . . 5 ((3 / 2) < 2 ↔ 3 < (2 · 2))
2016, 19mpbir 146 . . . 4 (3 / 2) < 2
21 df-2 9049 . . . 4 2 = (1 + 1)
2220, 21breqtri 4058 . . 3 (3 / 2) < (1 + 1)
23 3z 9355 . . . . 5 3 ∈ ℤ
24 2nn 9152 . . . . 5 2 ∈ ℕ
25 znq 9698 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℕ) → (3 / 2) ∈ ℚ)
2623, 24, 25mp2an 426 . . . 4 (3 / 2) ∈ ℚ
27 1z 9352 . . . 4 1 ∈ ℤ
28 flqbi 10380 . . . 4 (((3 / 2) ∈ ℚ ∧ 1 ∈ ℤ) → ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1))))
2926, 27, 28mp2an 426 . . 3 ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1)))
3013, 22, 29mpbir2an 944 . 2 (⌊‘(3 / 2)) = 1
319renegcli 8288 . . . 4 -2 ∈ ℝ
323renegcli 8288 . . . 4 -(3 / 2) ∈ ℝ
333, 9ltnegi 8520 . . . . 5 ((3 / 2) < 2 ↔ -2 < -(3 / 2))
3420, 33mpbi 145 . . . 4 -2 < -(3 / 2)
3531, 32, 34ltleii 8129 . . 3 -2 ≤ -(3 / 2)
364negcli 8294 . . . . . . 7 -2 ∈ ℂ
37 ax-1cn 7972 . . . . . . 7 1 ∈ ℂ
38 negdi2 8284 . . . . . . 7 ((-2 ∈ ℂ ∧ 1 ∈ ℂ) → -(-2 + 1) = (--2 − 1))
3936, 37, 38mp2an 426 . . . . . 6 -(-2 + 1) = (--2 − 1)
404negnegi 8296 . . . . . . 7 --2 = 2
4140oveq1i 5932 . . . . . 6 (--2 − 1) = (2 − 1)
4239, 41eqtri 2217 . . . . 5 -(-2 + 1) = (2 − 1)
43 2m1e1 9108 . . . . . 6 (2 − 1) = 1
4443, 12eqbrtri 4054 . . . . 5 (2 − 1) < (3 / 2)
4542, 44eqbrtri 4054 . . . 4 -(-2 + 1) < (3 / 2)
4631, 1readdcli 8039 . . . . 5 (-2 + 1) ∈ ℝ
4746, 3ltnegcon1i 8526 . . . 4 (-(-2 + 1) < (3 / 2) ↔ -(3 / 2) < (-2 + 1))
4845, 47mpbi 145 . . 3 -(3 / 2) < (-2 + 1)
49 qnegcl 9710 . . . . 5 ((3 / 2) ∈ ℚ → -(3 / 2) ∈ ℚ)
5026, 49ax-mp 5 . . . 4 -(3 / 2) ∈ ℚ
51 2z 9354 . . . . 5 2 ∈ ℤ
52 znegcl 9357 . . . . 5 (2 ∈ ℤ → -2 ∈ ℤ)
5351, 52ax-mp 5 . . . 4 -2 ∈ ℤ
54 flqbi 10380 . . . 4 ((-(3 / 2) ∈ ℚ ∧ -2 ∈ ℤ) → ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1))))
5550, 53, 54mp2an 426 . . 3 ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1)))
5635, 48, 55mpbir2an 944 . 2 (⌊‘-(3 / 2)) = -2
5730, 56pm3.2i 272 1 ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2167   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884   < clt 8061  cle 8062  cmin 8197  -cneg 8198   / cdiv 8699  cn 8990  2c2 9041  3c3 9042  4c4 9043  cz 9326  cq 9693  cfl 10358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-q 9694  df-rp 9729  df-fl 10360
This theorem is referenced by:  ex-ceil  15372
  Copyright terms: Public domain W3C validator