ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-fl GIF version

Theorem ex-fl 15999
Description: Example for df-fl 10457. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-fl ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)

Proof of Theorem ex-fl
StepHypRef Expression
1 1re 8113 . . . 4 1 ∈ ℝ
2 3re 9152 . . . . 5 3 ∈ ℝ
32rehalfcli 9328 . . . 4 (3 / 2) ∈ ℝ
4 2cn 9149 . . . . . . 7 2 ∈ ℂ
54mullidi 8117 . . . . . 6 (1 · 2) = 2
6 2lt3 9249 . . . . . 6 2 < 3
75, 6eqbrtri 4083 . . . . 5 (1 · 2) < 3
8 2pos 9169 . . . . . 6 0 < 2
9 2re 9148 . . . . . . 7 2 ∈ ℝ
101, 2, 9ltmuldivi 9037 . . . . . 6 (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2)))
118, 10ax-mp 5 . . . . 5 ((1 · 2) < 3 ↔ 1 < (3 / 2))
127, 11mpbi 145 . . . 4 1 < (3 / 2)
131, 3, 12ltleii 8217 . . 3 1 ≤ (3 / 2)
14 3lt4 9251 . . . . . 6 3 < 4
15 2t2e4 9233 . . . . . 6 (2 · 2) = 4
1614, 15breqtrri 4089 . . . . 5 3 < (2 · 2)
179, 8pm3.2i 272 . . . . . 6 (2 ∈ ℝ ∧ 0 < 2)
18 ltdivmul 8991 . . . . . 6 ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2)))
192, 9, 17, 18mp3an 1352 . . . . 5 ((3 / 2) < 2 ↔ 3 < (2 · 2))
2016, 19mpbir 146 . . . 4 (3 / 2) < 2
21 df-2 9137 . . . 4 2 = (1 + 1)
2220, 21breqtri 4087 . . 3 (3 / 2) < (1 + 1)
23 3z 9443 . . . . 5 3 ∈ ℤ
24 2nn 9240 . . . . 5 2 ∈ ℕ
25 znq 9787 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℕ) → (3 / 2) ∈ ℚ)
2623, 24, 25mp2an 426 . . . 4 (3 / 2) ∈ ℚ
27 1z 9440 . . . 4 1 ∈ ℤ
28 flqbi 10477 . . . 4 (((3 / 2) ∈ ℚ ∧ 1 ∈ ℤ) → ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1))))
2926, 27, 28mp2an 426 . . 3 ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1)))
3013, 22, 29mpbir2an 947 . 2 (⌊‘(3 / 2)) = 1
319renegcli 8376 . . . 4 -2 ∈ ℝ
323renegcli 8376 . . . 4 -(3 / 2) ∈ ℝ
333, 9ltnegi 8608 . . . . 5 ((3 / 2) < 2 ↔ -2 < -(3 / 2))
3420, 33mpbi 145 . . . 4 -2 < -(3 / 2)
3531, 32, 34ltleii 8217 . . 3 -2 ≤ -(3 / 2)
364negcli 8382 . . . . . . 7 -2 ∈ ℂ
37 ax-1cn 8060 . . . . . . 7 1 ∈ ℂ
38 negdi2 8372 . . . . . . 7 ((-2 ∈ ℂ ∧ 1 ∈ ℂ) → -(-2 + 1) = (--2 − 1))
3936, 37, 38mp2an 426 . . . . . 6 -(-2 + 1) = (--2 − 1)
404negnegi 8384 . . . . . . 7 --2 = 2
4140oveq1i 5984 . . . . . 6 (--2 − 1) = (2 − 1)
4239, 41eqtri 2230 . . . . 5 -(-2 + 1) = (2 − 1)
43 2m1e1 9196 . . . . . 6 (2 − 1) = 1
4443, 12eqbrtri 4083 . . . . 5 (2 − 1) < (3 / 2)
4542, 44eqbrtri 4083 . . . 4 -(-2 + 1) < (3 / 2)
4631, 1readdcli 8127 . . . . 5 (-2 + 1) ∈ ℝ
4746, 3ltnegcon1i 8614 . . . 4 (-(-2 + 1) < (3 / 2) ↔ -(3 / 2) < (-2 + 1))
4845, 47mpbi 145 . . 3 -(3 / 2) < (-2 + 1)
49 qnegcl 9799 . . . . 5 ((3 / 2) ∈ ℚ → -(3 / 2) ∈ ℚ)
5026, 49ax-mp 5 . . . 4 -(3 / 2) ∈ ℚ
51 2z 9442 . . . . 5 2 ∈ ℤ
52 znegcl 9445 . . . . 5 (2 ∈ ℤ → -2 ∈ ℤ)
5351, 52ax-mp 5 . . . 4 -2 ∈ ℤ
54 flqbi 10477 . . . 4 ((-(3 / 2) ∈ ℚ ∧ -2 ∈ ℤ) → ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1))))
5550, 53, 54mp2an 426 . . 3 ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1)))
5635, 48, 55mpbir2an 947 . 2 (⌊‘-(3 / 2)) = -2
5730, 56pm3.2i 272 1 ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1375  wcel 2180   class class class wbr 4062  cfv 5294  (class class class)co 5974  cc 7965  cr 7966  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972   < clt 8149  cle 8150  cmin 8285  -cneg 8286   / cdiv 8787  cn 9078  2c2 9129  3c3 9130  4c4 9131  cz 9414  cq 9782  cfl 10455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-q 9783  df-rp 9818  df-fl 10457
This theorem is referenced by:  ex-ceil  16000
  Copyright terms: Public domain W3C validator