| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8re | GIF version | ||
| Description: The number 8 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 8re | ⊢ 8 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 9171 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7re 9189 | . . 3 ⊢ 7 ∈ ℝ | |
| 3 | 1re 8141 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8155 | . 2 ⊢ (7 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2302 | 1 ⊢ 8 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 (class class class)co 6000 ℝcr 7994 1c1 7996 + caddc 7998 7c7 9162 8c8 9163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 |
| This theorem is referenced by: 8cn 9192 9re 9193 9pos 9210 6lt8 9298 5lt8 9299 4lt8 9300 3lt8 9301 2lt8 9302 1lt8 9303 8lt9 9304 7lt9 9305 8th4div3 9326 8lt10 9705 7lt10 9706 ef01bndlem 12262 cos2bnd 12266 slotstnscsi 13223 slotsdnscsi 13251 2lgsoddprmlem1 15778 2lgsoddprmlem2 15779 2lgsoddprmlem3a 15780 2lgsoddprmlem3b 15781 2lgsoddprmlem3c 15782 2lgsoddprmlem3d 15783 |
| Copyright terms: Public domain | W3C validator |