Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 8re | GIF version |
Description: The number 8 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
8re | ⊢ 8 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 8922 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7re 8940 | . . 3 ⊢ 7 ∈ ℝ | |
3 | 1re 7898 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 7912 | . 2 ⊢ (7 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2239 | 1 ⊢ 8 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 (class class class)co 5842 ℝcr 7752 1c1 7754 + caddc 7756 7c7 8913 8c8 8914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 |
This theorem is referenced by: 8cn 8943 9re 8944 9pos 8961 6lt8 9048 5lt8 9049 4lt8 9050 3lt8 9051 2lt8 9052 1lt8 9053 8lt9 9054 7lt9 9055 8th4div3 9076 8lt10 9453 7lt10 9454 ef01bndlem 11697 cos2bnd 11701 |
Copyright terms: Public domain | W3C validator |