| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8re | GIF version | ||
| Description: The number 8 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 8re | ⊢ 8 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 9136 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7re 9154 | . . 3 ⊢ 7 ∈ ℝ | |
| 3 | 1re 8106 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8120 | . 2 ⊢ (7 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2280 | 1 ⊢ 8 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2178 (class class class)co 5967 ℝcr 7959 1c1 7961 + caddc 7963 7c7 9127 8c8 9128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 |
| This theorem is referenced by: 8cn 9157 9re 9158 9pos 9175 6lt8 9263 5lt8 9264 4lt8 9265 3lt8 9266 2lt8 9267 1lt8 9268 8lt9 9269 7lt9 9270 8th4div3 9291 8lt10 9670 7lt10 9671 ef01bndlem 12182 cos2bnd 12186 slotstnscsi 13142 slotsdnscsi 13170 2lgsoddprmlem1 15697 2lgsoddprmlem2 15698 2lgsoddprmlem3a 15699 2lgsoddprmlem3b 15700 2lgsoddprmlem3c 15701 2lgsoddprmlem3d 15702 |
| Copyright terms: Public domain | W3C validator |