| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8re | GIF version | ||
| Description: The number 8 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 8re | ⊢ 8 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 9101 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7re 9119 | . . 3 ⊢ 7 ∈ ℝ | |
| 3 | 1re 8071 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8085 | . 2 ⊢ (7 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2278 | 1 ⊢ 8 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 (class class class)co 5944 ℝcr 7924 1c1 7926 + caddc 7928 7c7 9092 8c8 9093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 |
| This theorem is referenced by: 8cn 9122 9re 9123 9pos 9140 6lt8 9228 5lt8 9229 4lt8 9230 3lt8 9231 2lt8 9232 1lt8 9233 8lt9 9234 7lt9 9235 8th4div3 9256 8lt10 9635 7lt10 9636 ef01bndlem 12067 cos2bnd 12071 slotstnscsi 13027 slotsdnscsi 13055 2lgsoddprmlem1 15582 2lgsoddprmlem2 15583 2lgsoddprmlem3a 15584 2lgsoddprmlem3b 15585 2lgsoddprmlem3c 15586 2lgsoddprmlem3d 15587 |
| Copyright terms: Public domain | W3C validator |