![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 8re | GIF version |
Description: The number 8 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
8re | ⊢ 8 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 9047 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7re 9065 | . . 3 ⊢ 7 ∈ ℝ | |
3 | 1re 8018 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 8032 | . 2 ⊢ (7 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2266 | 1 ⊢ 8 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 (class class class)co 5918 ℝcr 7871 1c1 7873 + caddc 7875 7c7 9038 8c8 9039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 |
This theorem is referenced by: 8cn 9068 9re 9069 9pos 9086 6lt8 9173 5lt8 9174 4lt8 9175 3lt8 9176 2lt8 9177 1lt8 9178 8lt9 9179 7lt9 9180 8th4div3 9201 8lt10 9579 7lt10 9580 ef01bndlem 11899 cos2bnd 11903 slotstnscsi 12812 slotsdnscsi 12836 2lgsoddprmlem1 15193 2lgsoddprmlem2 15194 2lgsoddprmlem3a 15195 2lgsoddprmlem3b 15196 2lgsoddprmlem3c 15197 2lgsoddprmlem3d 15198 |
Copyright terms: Public domain | W3C validator |