| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8re | GIF version | ||
| Description: The number 8 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 8re | ⊢ 8 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 9057 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7re 9075 | . . 3 ⊢ 7 ∈ ℝ | |
| 3 | 1re 8027 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8041 | . 2 ⊢ (7 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 8 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5923 ℝcr 7880 1c1 7882 + caddc 7884 7c7 9048 8c8 9049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1re 7975 ax-addrcl 7978 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-2 9051 df-3 9052 df-4 9053 df-5 9054 df-6 9055 df-7 9056 df-8 9057 |
| This theorem is referenced by: 8cn 9078 9re 9079 9pos 9096 6lt8 9184 5lt8 9185 4lt8 9186 3lt8 9187 2lt8 9188 1lt8 9189 8lt9 9190 7lt9 9191 8th4div3 9212 8lt10 9590 7lt10 9591 ef01bndlem 11923 cos2bnd 11927 slotstnscsi 12882 slotsdnscsi 12906 2lgsoddprmlem1 15356 2lgsoddprmlem2 15357 2lgsoddprmlem3a 15358 2lgsoddprmlem3b 15359 2lgsoddprmlem3c 15360 2lgsoddprmlem3d 15361 |
| Copyright terms: Public domain | W3C validator |