| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8re | GIF version | ||
| Description: The number 8 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 8re | ⊢ 8 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 9100 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7re 9118 | . . 3 ⊢ 7 ∈ ℝ | |
| 3 | 1re 8070 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8084 | . 2 ⊢ (7 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2277 | 1 ⊢ 8 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 (class class class)co 5943 ℝcr 7923 1c1 7925 + caddc 7927 7c7 9091 8c8 9092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 |
| This theorem is referenced by: 8cn 9121 9re 9122 9pos 9139 6lt8 9227 5lt8 9228 4lt8 9229 3lt8 9230 2lt8 9231 1lt8 9232 8lt9 9233 7lt9 9234 8th4div3 9255 8lt10 9634 7lt10 9635 ef01bndlem 12038 cos2bnd 12042 slotstnscsi 12998 slotsdnscsi 13026 2lgsoddprmlem1 15553 2lgsoddprmlem2 15554 2lgsoddprmlem3a 15555 2lgsoddprmlem3b 15556 2lgsoddprmlem3c 15557 2lgsoddprmlem3d 15558 |
| Copyright terms: Public domain | W3C validator |