| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8re | GIF version | ||
| Description: The number 8 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 8re | ⊢ 8 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 9074 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7re 9092 | . . 3 ⊢ 7 ∈ ℝ | |
| 3 | 1re 8044 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8058 | . 2 ⊢ (7 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 8 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5925 ℝcr 7897 1c1 7899 + caddc 7901 7c7 9065 8c8 9066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 df-8 9074 |
| This theorem is referenced by: 8cn 9095 9re 9096 9pos 9113 6lt8 9201 5lt8 9202 4lt8 9203 3lt8 9204 2lt8 9205 1lt8 9206 8lt9 9207 7lt9 9208 8th4div3 9229 8lt10 9607 7lt10 9608 ef01bndlem 11940 cos2bnd 11944 slotstnscsi 12899 slotsdnscsi 12927 2lgsoddprmlem1 15454 2lgsoddprmlem2 15455 2lgsoddprmlem3a 15456 2lgsoddprmlem3b 15457 2lgsoddprmlem3c 15458 2lgsoddprmlem3d 15459 |
| Copyright terms: Public domain | W3C validator |