![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 8re | GIF version |
Description: The number 8 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
8re | ⊢ 8 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 9049 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7re 9067 | . . 3 ⊢ 7 ∈ ℝ | |
3 | 1re 8020 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 8034 | . 2 ⊢ (7 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2266 | 1 ⊢ 8 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 (class class class)co 5919 ℝcr 7873 1c1 7875 + caddc 7877 7c7 9040 8c8 9041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 |
This theorem is referenced by: 8cn 9070 9re 9071 9pos 9088 6lt8 9176 5lt8 9177 4lt8 9178 3lt8 9179 2lt8 9180 1lt8 9181 8lt9 9182 7lt9 9183 8th4div3 9204 8lt10 9582 7lt10 9583 ef01bndlem 11902 cos2bnd 11906 slotstnscsi 12815 slotsdnscsi 12839 2lgsoddprmlem1 15262 2lgsoddprmlem2 15263 2lgsoddprmlem3a 15264 2lgsoddprmlem3b 15265 2lgsoddprmlem3c 15266 2lgsoddprmlem3d 15267 |
Copyright terms: Public domain | W3C validator |