| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9re | GIF version | ||
| Description: The number 9 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 9re | ⊢ 9 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 9101 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8re 9120 | . . 3 ⊢ 8 ∈ ℝ | |
| 3 | 1re 8070 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8084 | . 2 ⊢ (8 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2277 | 1 ⊢ 9 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 (class class class)co 5943 ℝcr 7923 1c1 7925 + caddc 7927 8c8 9092 9c9 9093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 |
| This theorem is referenced by: 9cn 9123 7lt9 9234 6lt9 9235 5lt9 9236 4lt9 9237 3lt9 9238 2lt9 9239 1lt9 9240 9lt10 9633 8lt10 9634 0.999... 11803 cos2bnd 12042 sincos2sgn 12048 slotsdifplendx 13013 dsndxntsetndx 13027 unifndxntsetndx 13034 setsmsdsg 14923 2logb9irr 15414 2logb9irrap 15420 |
| Copyright terms: Public domain | W3C validator |