Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 9re | GIF version |
Description: The number 9 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
9re | ⊢ 9 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 8923 | . 2 ⊢ 9 = (8 + 1) | |
2 | 8re 8942 | . . 3 ⊢ 8 ∈ ℝ | |
3 | 1re 7898 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 7912 | . 2 ⊢ (8 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2239 | 1 ⊢ 9 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 (class class class)co 5842 ℝcr 7752 1c1 7754 + caddc 7756 8c8 8914 9c9 8915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 |
This theorem is referenced by: 9cn 8945 7lt9 9055 6lt9 9056 5lt9 9057 4lt9 9058 3lt9 9059 2lt9 9060 1lt9 9061 9lt10 9452 8lt10 9453 0.999... 11462 cos2bnd 11701 sincos2sgn 11706 setsmsdsg 13120 2logb9irr 13529 2logb9irrap 13535 |
Copyright terms: Public domain | W3C validator |