Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 9re | GIF version |
Description: The number 9 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
9re | ⊢ 9 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 8944 | . 2 ⊢ 9 = (8 + 1) | |
2 | 8re 8963 | . . 3 ⊢ 8 ∈ ℝ | |
3 | 1re 7919 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 7933 | . 2 ⊢ (8 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2243 | 1 ⊢ 9 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 (class class class)co 5853 ℝcr 7773 1c1 7775 + caddc 7777 8c8 8935 9c9 8936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-9 8944 |
This theorem is referenced by: 9cn 8966 7lt9 9076 6lt9 9077 5lt9 9078 4lt9 9079 3lt9 9080 2lt9 9081 1lt9 9082 9lt10 9473 8lt10 9474 0.999... 11484 cos2bnd 11723 sincos2sgn 11728 setsmsdsg 13274 2logb9irr 13683 2logb9irrap 13689 |
Copyright terms: Public domain | W3C validator |