| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9re | GIF version | ||
| Description: The number 9 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 9re | ⊢ 9 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 9075 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8re 9094 | . . 3 ⊢ 8 ∈ ℝ | |
| 3 | 1re 8044 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8058 | . 2 ⊢ (8 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 9 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5925 ℝcr 7897 1c1 7899 + caddc 7901 8c8 9066 9c9 9067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 df-8 9074 df-9 9075 |
| This theorem is referenced by: 9cn 9097 7lt9 9208 6lt9 9209 5lt9 9210 4lt9 9211 3lt9 9212 2lt9 9213 1lt9 9214 9lt10 9606 8lt10 9607 0.999... 11705 cos2bnd 11944 sincos2sgn 11950 slotsdifplendx 12914 dsndxntsetndx 12928 unifndxntsetndx 12935 setsmsdsg 14824 2logb9irr 15315 2logb9irrap 15321 |
| Copyright terms: Public domain | W3C validator |