![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 9re | GIF version |
Description: The number 9 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
9re | ⊢ 9 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 8988 | . 2 ⊢ 9 = (8 + 1) | |
2 | 8re 9007 | . . 3 ⊢ 8 ∈ ℝ | |
3 | 1re 7959 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 7973 | . 2 ⊢ (8 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2250 | 1 ⊢ 9 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 (class class class)co 5878 ℝcr 7813 1c1 7815 + caddc 7817 8c8 8979 9c9 8980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 ax-1re 7908 ax-addrcl 7911 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-clel 2173 df-2 8981 df-3 8982 df-4 8983 df-5 8984 df-6 8985 df-7 8986 df-8 8987 df-9 8988 |
This theorem is referenced by: 9cn 9010 7lt9 9120 6lt9 9121 5lt9 9122 4lt9 9123 3lt9 9124 2lt9 9125 1lt9 9126 9lt10 9517 8lt10 9518 0.999... 11532 cos2bnd 11771 sincos2sgn 11776 slotsdifplendx 12671 dsndxntsetndx 12681 unifndxntsetndx 12688 cnfldstr 13631 setsmsdsg 14168 2logb9irr 14577 2logb9irrap 14583 |
Copyright terms: Public domain | W3C validator |