| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9re | GIF version | ||
| Description: The number 9 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 9re | ⊢ 9 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 9102 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8re 9121 | . . 3 ⊢ 8 ∈ ℝ | |
| 3 | 1re 8071 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8085 | . 2 ⊢ (8 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2278 | 1 ⊢ 9 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 (class class class)co 5944 ℝcr 7924 1c1 7926 + caddc 7928 8c8 9093 9c9 9094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-9 9102 |
| This theorem is referenced by: 9cn 9124 7lt9 9235 6lt9 9236 5lt9 9237 4lt9 9238 3lt9 9239 2lt9 9240 1lt9 9241 9lt10 9634 8lt10 9635 0.999... 11832 cos2bnd 12071 sincos2sgn 12077 slotsdifplendx 13042 dsndxntsetndx 13056 unifndxntsetndx 13063 setsmsdsg 14952 2logb9irr 15443 2logb9irrap 15449 |
| Copyright terms: Public domain | W3C validator |