| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9re | GIF version | ||
| Description: The number 9 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 9re | ⊢ 9 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 9059 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8re 9078 | . . 3 ⊢ 8 ∈ ℝ | |
| 3 | 1re 8028 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8042 | . 2 ⊢ (8 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 9 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5923 ℝcr 7881 1c1 7883 + caddc 7885 8c8 9050 9c9 9051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1re 7976 ax-addrcl 7979 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-2 9052 df-3 9053 df-4 9054 df-5 9055 df-6 9056 df-7 9057 df-8 9058 df-9 9059 |
| This theorem is referenced by: 9cn 9081 7lt9 9192 6lt9 9193 5lt9 9194 4lt9 9195 3lt9 9196 2lt9 9197 1lt9 9198 9lt10 9590 8lt10 9591 0.999... 11689 cos2bnd 11928 sincos2sgn 11934 slotsdifplendx 12898 dsndxntsetndx 12912 unifndxntsetndx 12919 setsmsdsg 14742 2logb9irr 15233 2logb9irrap 15239 |
| Copyright terms: Public domain | W3C validator |