| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9re | GIF version | ||
| Description: The number 9 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 9re | ⊢ 9 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 9137 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8re 9156 | . . 3 ⊢ 8 ∈ ℝ | |
| 3 | 1re 8106 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8120 | . 2 ⊢ (8 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2280 | 1 ⊢ 9 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2178 (class class class)co 5967 ℝcr 7959 1c1 7961 + caddc 7963 8c8 9128 9c9 9129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-9 9137 |
| This theorem is referenced by: 9cn 9159 7lt9 9270 6lt9 9271 5lt9 9272 4lt9 9273 3lt9 9274 2lt9 9275 1lt9 9276 9lt10 9669 8lt10 9670 0.999... 11947 cos2bnd 12186 sincos2sgn 12192 slotsdifplendx 13157 dsndxntsetndx 13171 unifndxntsetndx 13178 setsmsdsg 15067 2logb9irr 15558 2logb9irrap 15564 |
| Copyright terms: Public domain | W3C validator |