ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  9re GIF version

Theorem 9re 8499
Description: The number 9 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
9re 9 ∈ ℝ

Proof of Theorem 9re
StepHypRef Expression
1 df-9 8478 . 2 9 = (8 + 1)
2 8re 8497 . . 3 8 ∈ ℝ
3 1re 7477 . . 3 1 ∈ ℝ
42, 3readdcli 7491 . 2 (8 + 1) ∈ ℝ
51, 4eqeltri 2160 1 9 ∈ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 1438  (class class class)co 5644  cr 7339  1c1 7341   + caddc 7343  8c8 8469  9c9 8470
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-4 1445  ax-17 1464  ax-ial 1472  ax-ext 2070  ax-1re 7429  ax-addrcl 7432
This theorem depends on definitions:  df-bi 115  df-cleq 2081  df-clel 2084  df-2 8471  df-3 8472  df-4 8473  df-5 8474  df-6 8475  df-7 8476  df-8 8477  df-9 8478
This theorem is referenced by:  9cn  8500  7lt9  8604  6lt9  8605  5lt9  8606  4lt9  8607  3lt9  8608  2lt9  8609  1lt9  8610  9lt10  8997  8lt10  8998  0.999...  10902  cos2bnd  11038  sincos2sgn  11043
  Copyright terms: Public domain W3C validator