ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  9re GIF version

Theorem 9re 9096
Description: The number 9 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
9re 9 ∈ ℝ

Proof of Theorem 9re
StepHypRef Expression
1 df-9 9075 . 2 9 = (8 + 1)
2 8re 9094 . . 3 8 ∈ ℝ
3 1re 8044 . . 3 1 ∈ ℝ
42, 3readdcli 8058 . 2 (8 + 1) ∈ ℝ
51, 4eqeltri 2269 1 9 ∈ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2167  (class class class)co 5925  cr 7897  1c1 7899   + caddc 7901  8c8 9066  9c9 9067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178  ax-1re 7992  ax-addrcl 7995
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075
This theorem is referenced by:  9cn  9097  7lt9  9208  6lt9  9209  5lt9  9210  4lt9  9211  3lt9  9212  2lt9  9213  1lt9  9214  9lt10  9606  8lt10  9607  0.999...  11705  cos2bnd  11944  sincos2sgn  11950  slotsdifplendx  12914  dsndxntsetndx  12928  unifndxntsetndx  12935  setsmsdsg  14824  2logb9irr  15315  2logb9irrap  15321
  Copyright terms: Public domain W3C validator