Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4re | GIF version |
Description: The number 4 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
4re | ⊢ 4 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 8873 | . 2 ⊢ 4 = (3 + 1) | |
2 | 3re 8886 | . . 3 ⊢ 3 ∈ ℝ | |
3 | 1re 7856 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 7870 | . 2 ⊢ (3 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2227 | 1 ⊢ 4 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2125 (class class class)co 5814 ℝcr 7710 1c1 7712 + caddc 7714 3c3 8864 4c4 8865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-4 1487 ax-17 1503 ax-ial 1511 ax-ext 2136 ax-1re 7805 ax-addrcl 7808 |
This theorem depends on definitions: df-bi 116 df-cleq 2147 df-clel 2150 df-2 8871 df-3 8872 df-4 8873 |
This theorem is referenced by: 4cn 8890 5re 8891 4ne0 8910 4ap0 8911 5pos 8912 2lt4 8985 1lt4 8986 4lt5 8987 3lt5 8988 2lt5 8989 1lt5 8990 4lt6 8992 3lt6 8993 4lt7 8998 3lt7 8999 4lt8 9005 3lt8 9006 4lt9 9013 3lt9 9014 8th4div3 9031 div4p1lem1div2 9065 4lt10 9409 3lt10 9410 eluz4eluz2 9457 fzo0to42pr 10097 fldiv4p1lem1div2 10182 faclbnd2 10593 4bc2eq6 10625 resqrexlemover 10887 resqrexlemcalc1 10891 resqrexlemcalc2 10892 resqrexlemcalc3 10893 resqrexlemnm 10895 resqrexlemga 10900 sqrt2gt1lt2 10926 amgm2 10995 ef01bndlem 11630 sin01bnd 11631 cos01bnd 11632 cos2bnd 11634 flodddiv4 11798 dveflem 13034 sin0pilem2 13050 sinhalfpilem 13059 sincosq1lem 13093 coseq0negpitopi 13104 tangtx 13106 sincos4thpi 13108 pigt3 13112 |
Copyright terms: Public domain | W3C validator |