| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4re | GIF version | ||
| Description: The number 4 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 4re | ⊢ 4 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9051 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 3re 9064 | . . 3 ⊢ 3 ∈ ℝ | |
| 3 | 1re 8025 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8039 | . 2 ⊢ (3 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 4 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5922 ℝcr 7878 1c1 7880 + caddc 7882 3c3 9042 4c4 9043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-2 9049 df-3 9050 df-4 9051 |
| This theorem is referenced by: 4cn 9068 5re 9069 4ne0 9088 4ap0 9089 5pos 9090 2lt4 9164 1lt4 9165 4lt5 9166 3lt5 9167 2lt5 9168 1lt5 9169 4lt6 9171 3lt6 9172 4lt7 9177 3lt7 9178 4lt8 9184 3lt8 9185 4lt9 9192 3lt9 9193 8th4div3 9210 div4p1lem1div2 9245 4lt10 9592 3lt10 9593 eluz4eluz2 9641 fz0to4untppr 10199 fzo0to42pr 10296 fldiv4p1lem1div2 10395 faclbnd2 10834 4bc2eq6 10866 resqrexlemover 11175 resqrexlemcalc1 11179 resqrexlemcalc2 11180 resqrexlemcalc3 11181 resqrexlemnm 11183 resqrexlemga 11188 sqrt2gt1lt2 11214 amgm2 11283 ef01bndlem 11921 sin01bnd 11922 cos01bnd 11923 cos2bnd 11925 flodddiv4 12101 4sqlem12 12571 tsetndxnstarvndx 12871 slotsdifplendx 12887 slotsdifdsndx 12898 slotsdifunifndx 12905 dveflem 14962 sin0pilem2 15018 sinhalfpilem 15027 sincosq1lem 15061 coseq0negpitopi 15072 tangtx 15074 sincos4thpi 15076 pigt3 15080 gausslemma2dlem0d 15293 gausslemma2dlem3 15304 gausslemma2dlem4 15305 |
| Copyright terms: Public domain | W3C validator |