| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4re | GIF version | ||
| Description: The number 4 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 4re | ⊢ 4 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9127 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 3re 9140 | . . 3 ⊢ 3 ∈ ℝ | |
| 3 | 1re 8101 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8115 | . 2 ⊢ (3 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2279 | 1 ⊢ 4 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 (class class class)co 5962 ℝcr 7954 1c1 7956 + caddc 7958 3c3 9118 4c4 9119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2188 ax-1re 8049 ax-addrcl 8052 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-clel 2202 df-2 9125 df-3 9126 df-4 9127 |
| This theorem is referenced by: 4cn 9144 5re 9145 4ne0 9164 4ap0 9165 5pos 9166 2lt4 9240 1lt4 9241 4lt5 9242 3lt5 9243 2lt5 9244 1lt5 9245 4lt6 9247 3lt6 9248 4lt7 9253 3lt7 9254 4lt8 9260 3lt8 9261 4lt9 9268 3lt9 9269 8th4div3 9286 div4p1lem1div2 9321 4lt10 9669 3lt10 9670 eluz4eluz2 9718 fz0to4untppr 10276 fzo0to42pr 10381 fldiv4p1lem1div2 10480 faclbnd2 10919 4bc2eq6 10951 resqrexlemover 11406 resqrexlemcalc1 11410 resqrexlemcalc2 11411 resqrexlemcalc3 11412 resqrexlemnm 11414 resqrexlemga 11419 sqrt2gt1lt2 11445 amgm2 11514 ef01bndlem 12152 sin01bnd 12153 cos01bnd 12154 cos2bnd 12156 flodddiv4 12332 4sqlem12 12810 tsetndxnstarvndx 13111 slotsdifplendx 13127 slotsdifdsndx 13142 slotsdifunifndx 13149 dveflem 15283 sin0pilem2 15339 sinhalfpilem 15348 sincosq1lem 15382 coseq0negpitopi 15393 tangtx 15395 sincos4thpi 15397 pigt3 15401 gausslemma2dlem0d 15614 gausslemma2dlem3 15625 gausslemma2dlem4 15626 |
| Copyright terms: Public domain | W3C validator |