Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4re | GIF version |
Description: The number 4 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
4re | ⊢ 4 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 8914 | . 2 ⊢ 4 = (3 + 1) | |
2 | 3re 8927 | . . 3 ⊢ 3 ∈ ℝ | |
3 | 1re 7894 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 7908 | . 2 ⊢ (3 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2238 | 1 ⊢ 4 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 (class class class)co 5841 ℝcr 7748 1c1 7750 + caddc 7752 3c3 8905 4c4 8906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-1re 7843 ax-addrcl 7846 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 df-2 8912 df-3 8913 df-4 8914 |
This theorem is referenced by: 4cn 8931 5re 8932 4ne0 8951 4ap0 8952 5pos 8953 2lt4 9026 1lt4 9027 4lt5 9028 3lt5 9029 2lt5 9030 1lt5 9031 4lt6 9033 3lt6 9034 4lt7 9039 3lt7 9040 4lt8 9046 3lt8 9047 4lt9 9054 3lt9 9055 8th4div3 9072 div4p1lem1div2 9106 4lt10 9453 3lt10 9454 eluz4eluz2 9501 fz0to4untppr 10055 fzo0to42pr 10151 fldiv4p1lem1div2 10236 faclbnd2 10651 4bc2eq6 10683 resqrexlemover 10948 resqrexlemcalc1 10952 resqrexlemcalc2 10953 resqrexlemcalc3 10954 resqrexlemnm 10956 resqrexlemga 10961 sqrt2gt1lt2 10987 amgm2 11056 ef01bndlem 11693 sin01bnd 11694 cos01bnd 11695 cos2bnd 11697 flodddiv4 11867 dveflem 13287 sin0pilem2 13303 sinhalfpilem 13312 sincosq1lem 13346 coseq0negpitopi 13357 tangtx 13359 sincos4thpi 13361 pigt3 13365 |
Copyright terms: Public domain | W3C validator |