| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4re | GIF version | ||
| Description: The number 4 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 4re | ⊢ 4 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9167 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 3re 9180 | . . 3 ⊢ 3 ∈ ℝ | |
| 3 | 1re 8141 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8155 | . 2 ⊢ (3 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2302 | 1 ⊢ 4 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 (class class class)co 6000 ℝcr 7994 1c1 7996 + caddc 7998 3c3 9158 4c4 9159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 df-2 9165 df-3 9166 df-4 9167 |
| This theorem is referenced by: 4cn 9184 5re 9185 4ne0 9204 4ap0 9205 5pos 9206 2lt4 9280 1lt4 9281 4lt5 9282 3lt5 9283 2lt5 9284 1lt5 9285 4lt6 9287 3lt6 9288 4lt7 9293 3lt7 9294 4lt8 9300 3lt8 9301 4lt9 9308 3lt9 9309 8th4div3 9326 div4p1lem1div2 9361 4lt10 9709 3lt10 9710 eluz4eluz2 9758 fz0to4untppr 10316 fzo0to42pr 10421 fldiv4p1lem1div2 10520 faclbnd2 10959 4bc2eq6 10991 resqrexlemover 11516 resqrexlemcalc1 11520 resqrexlemcalc2 11521 resqrexlemcalc3 11522 resqrexlemnm 11524 resqrexlemga 11529 sqrt2gt1lt2 11555 amgm2 11624 ef01bndlem 12262 sin01bnd 12263 cos01bnd 12264 cos2bnd 12266 flodddiv4 12442 4sqlem12 12920 tsetndxnstarvndx 13222 slotsdifplendx 13238 slotsdifdsndx 13253 slotsdifunifndx 13260 dveflem 15394 sin0pilem2 15450 sinhalfpilem 15459 sincosq1lem 15493 coseq0negpitopi 15504 tangtx 15506 sincos4thpi 15508 pigt3 15512 gausslemma2dlem0d 15725 gausslemma2dlem3 15736 gausslemma2dlem4 15737 |
| Copyright terms: Public domain | W3C validator |