| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4re | GIF version | ||
| Description: The number 4 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 4re | ⊢ 4 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9096 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 3re 9109 | . . 3 ⊢ 3 ∈ ℝ | |
| 3 | 1re 8070 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8084 | . 2 ⊢ (3 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2277 | 1 ⊢ 4 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 (class class class)co 5943 ℝcr 7923 1c1 7925 + caddc 7927 3c3 9087 4c4 9088 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 df-2 9094 df-3 9095 df-4 9096 |
| This theorem is referenced by: 4cn 9113 5re 9114 4ne0 9133 4ap0 9134 5pos 9135 2lt4 9209 1lt4 9210 4lt5 9211 3lt5 9212 2lt5 9213 1lt5 9214 4lt6 9216 3lt6 9217 4lt7 9222 3lt7 9223 4lt8 9229 3lt8 9230 4lt9 9237 3lt9 9238 8th4div3 9255 div4p1lem1div2 9290 4lt10 9638 3lt10 9639 eluz4eluz2 9687 fz0to4untppr 10245 fzo0to42pr 10347 fldiv4p1lem1div2 10446 faclbnd2 10885 4bc2eq6 10917 resqrexlemover 11292 resqrexlemcalc1 11296 resqrexlemcalc2 11297 resqrexlemcalc3 11298 resqrexlemnm 11300 resqrexlemga 11305 sqrt2gt1lt2 11331 amgm2 11400 ef01bndlem 12038 sin01bnd 12039 cos01bnd 12040 cos2bnd 12042 flodddiv4 12218 4sqlem12 12696 tsetndxnstarvndx 12997 slotsdifplendx 13013 slotsdifdsndx 13028 slotsdifunifndx 13035 dveflem 15169 sin0pilem2 15225 sinhalfpilem 15234 sincosq1lem 15268 coseq0negpitopi 15279 tangtx 15281 sincos4thpi 15283 pigt3 15287 gausslemma2dlem0d 15500 gausslemma2dlem3 15511 gausslemma2dlem4 15512 |
| Copyright terms: Public domain | W3C validator |