| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4re | GIF version | ||
| Description: The number 4 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 4re | ⊢ 4 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9070 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 3re 9083 | . . 3 ⊢ 3 ∈ ℝ | |
| 3 | 1re 8044 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8058 | . 2 ⊢ (3 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 4 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5925 ℝcr 7897 1c1 7899 + caddc 7901 3c3 9061 4c4 9062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-2 9068 df-3 9069 df-4 9070 |
| This theorem is referenced by: 4cn 9087 5re 9088 4ne0 9107 4ap0 9108 5pos 9109 2lt4 9183 1lt4 9184 4lt5 9185 3lt5 9186 2lt5 9187 1lt5 9188 4lt6 9190 3lt6 9191 4lt7 9196 3lt7 9197 4lt8 9203 3lt8 9204 4lt9 9211 3lt9 9212 8th4div3 9229 div4p1lem1div2 9264 4lt10 9611 3lt10 9612 eluz4eluz2 9660 fz0to4untppr 10218 fzo0to42pr 10315 fldiv4p1lem1div2 10414 faclbnd2 10853 4bc2eq6 10885 resqrexlemover 11194 resqrexlemcalc1 11198 resqrexlemcalc2 11199 resqrexlemcalc3 11200 resqrexlemnm 11202 resqrexlemga 11207 sqrt2gt1lt2 11233 amgm2 11302 ef01bndlem 11940 sin01bnd 11941 cos01bnd 11942 cos2bnd 11944 flodddiv4 12120 4sqlem12 12598 tsetndxnstarvndx 12898 slotsdifplendx 12914 slotsdifdsndx 12929 slotsdifunifndx 12936 dveflem 15070 sin0pilem2 15126 sinhalfpilem 15135 sincosq1lem 15169 coseq0negpitopi 15180 tangtx 15182 sincos4thpi 15184 pigt3 15188 gausslemma2dlem0d 15401 gausslemma2dlem3 15412 gausslemma2dlem4 15413 |
| Copyright terms: Public domain | W3C validator |