![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3re | GIF version |
Description: The number 3 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
3re | ⊢ 3 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 8982 | . 2 ⊢ 3 = (2 + 1) | |
2 | 2re 8992 | . . 3 ⊢ 2 ∈ ℝ | |
3 | 1re 7959 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 7973 | . 2 ⊢ (2 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2250 | 1 ⊢ 3 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 (class class class)co 5878 ℝcr 7813 1c1 7815 + caddc 7817 2c2 8973 3c3 8974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 ax-1re 7908 ax-addrcl 7911 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-clel 2173 df-2 8981 df-3 8982 |
This theorem is referenced by: 3cn 8997 4re 8999 3ne0 9017 3ap0 9018 4pos 9019 1lt3 9093 3lt4 9094 2lt4 9095 3lt5 9098 3lt6 9103 2lt6 9104 3lt7 9109 2lt7 9110 3lt8 9116 2lt8 9117 3lt9 9124 2lt9 9125 1le3 9133 8th4div3 9141 halfpm6th 9142 3halfnz 9353 3lt10 9523 2lt10 9524 uzuzle23 9574 uz3m2nn 9576 nn01to3 9620 3rp 9662 fz0to4untppr 10127 expnass 10629 sqrt9 11060 ef01bndlem 11767 sin01bnd 11768 cos2bnd 11771 sin01gt0 11772 cos01gt0 11773 egt2lt3 11790 flodddiv4 11942 starvndxnmulrndx 12605 scandxnmulrndx 12617 vscandxnmulrndx 12622 ipndxnmulrndx 12635 tsetndxnmulrndx 12654 plendxnmulrndx 12668 dsndxnmulrndx 12679 slotsdifunifndx 12689 dveflem 14348 sincosq3sgn 14410 sincosq4sgn 14411 cosq23lt0 14415 coseq0q4123 14416 coseq00topi 14417 coseq0negpitopi 14418 tangtx 14420 sincos6thpi 14424 pigt3 14426 pige3 14427 cos02pilt1 14433 lgsdir2lem1 14590 ex-fl 14638 ex-gcd 14644 |
Copyright terms: Public domain | W3C validator |