Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3re | GIF version |
Description: The number 3 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
3re | ⊢ 3 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 8913 | . 2 ⊢ 3 = (2 + 1) | |
2 | 2re 8923 | . . 3 ⊢ 2 ∈ ℝ | |
3 | 1re 7894 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 7908 | . 2 ⊢ (2 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2238 | 1 ⊢ 3 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 (class class class)co 5841 ℝcr 7748 1c1 7750 + caddc 7752 2c2 8904 3c3 8905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-1re 7843 ax-addrcl 7846 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 df-2 8912 df-3 8913 |
This theorem is referenced by: 3cn 8928 4re 8930 3ne0 8948 3ap0 8949 4pos 8950 1lt3 9024 3lt4 9025 2lt4 9026 3lt5 9029 3lt6 9034 2lt6 9035 3lt7 9040 2lt7 9041 3lt8 9047 2lt8 9048 3lt9 9055 2lt9 9056 1le3 9064 8th4div3 9072 halfpm6th 9073 3halfnz 9284 3lt10 9454 2lt10 9455 uzuzle23 9505 uz3m2nn 9507 nn01to3 9551 3rp 9591 fz0to4untppr 10055 expnass 10556 sqrt9 10986 ef01bndlem 11693 sin01bnd 11694 cos2bnd 11697 sin01gt0 11698 cos01gt0 11699 egt2lt3 11716 flodddiv4 11867 dveflem 13287 sincosq3sgn 13349 sincosq4sgn 13350 cosq23lt0 13354 coseq0q4123 13355 coseq00topi 13356 coseq0negpitopi 13357 tangtx 13359 sincos6thpi 13363 pigt3 13365 pige3 13366 cos02pilt1 13372 lgsdir2lem1 13529 ex-fl 13566 ex-gcd 13572 |
Copyright terms: Public domain | W3C validator |