| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3re | GIF version | ||
| Description: The number 3 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 3re | ⊢ 3 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9069 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 2re 9079 | . . 3 ⊢ 2 ∈ ℝ | |
| 3 | 1re 8044 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8058 | . 2 ⊢ (2 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 3 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5925 ℝcr 7897 1c1 7899 + caddc 7901 2c2 9060 3c3 9061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-2 9068 df-3 9069 |
| This theorem is referenced by: 3cn 9084 4re 9086 3ne0 9104 3ap0 9105 4pos 9106 1lt3 9181 3lt4 9182 2lt4 9183 3lt5 9186 3lt6 9191 2lt6 9192 3lt7 9197 2lt7 9198 3lt8 9204 2lt8 9205 3lt9 9212 2lt9 9213 1le3 9221 8th4div3 9229 halfpm6th 9230 3halfnz 9442 3lt10 9612 2lt10 9613 uzuzle23 9664 uz3m2nn 9666 nn01to3 9710 3rp 9753 fz0to4untppr 10218 expnass 10756 sqrt9 11232 ef01bndlem 11940 sin01bnd 11941 cos2bnd 11944 sin01gt0 11946 cos01gt0 11947 egt2lt3 11964 flodddiv4 12120 starvndxnmulrndx 12848 scandxnmulrndx 12860 vscandxnmulrndx 12865 ipndxnmulrndx 12878 tsetndxnmulrndx 12897 plendxnmulrndx 12911 dsndxnmulrndx 12926 slotsdifunifndx 12936 dveflem 15070 sincosq3sgn 15172 sincosq4sgn 15173 cosq23lt0 15177 coseq0q4123 15178 coseq00topi 15179 coseq0negpitopi 15180 tangtx 15182 sincos6thpi 15186 pigt3 15188 pige3 15189 cos02pilt1 15195 lgsdir2lem1 15377 2lgslem3 15450 ex-fl 15479 ex-gcd 15485 |
| Copyright terms: Public domain | W3C validator |