![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3re | GIF version |
Description: The number 3 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
3re | ⊢ 3 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 9042 | . 2 ⊢ 3 = (2 + 1) | |
2 | 2re 9052 | . . 3 ⊢ 2 ∈ ℝ | |
3 | 1re 8018 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 8032 | . 2 ⊢ (2 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2266 | 1 ⊢ 3 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 (class class class)co 5918 ℝcr 7871 1c1 7873 + caddc 7875 2c2 9033 3c3 9034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 df-2 9041 df-3 9042 |
This theorem is referenced by: 3cn 9057 4re 9059 3ne0 9077 3ap0 9078 4pos 9079 1lt3 9153 3lt4 9154 2lt4 9155 3lt5 9158 3lt6 9163 2lt6 9164 3lt7 9169 2lt7 9170 3lt8 9176 2lt8 9177 3lt9 9184 2lt9 9185 1le3 9193 8th4div3 9201 halfpm6th 9202 3halfnz 9414 3lt10 9584 2lt10 9585 uzuzle23 9636 uz3m2nn 9638 nn01to3 9682 3rp 9725 fz0to4untppr 10190 expnass 10716 sqrt9 11192 ef01bndlem 11899 sin01bnd 11900 cos2bnd 11903 sin01gt0 11905 cos01gt0 11906 egt2lt3 11923 flodddiv4 12075 starvndxnmulrndx 12761 scandxnmulrndx 12773 vscandxnmulrndx 12778 ipndxnmulrndx 12791 tsetndxnmulrndx 12810 plendxnmulrndx 12824 dsndxnmulrndx 12835 slotsdifunifndx 12845 dveflem 14872 sincosq3sgn 14963 sincosq4sgn 14964 cosq23lt0 14968 coseq0q4123 14969 coseq00topi 14970 coseq0negpitopi 14971 tangtx 14973 sincos6thpi 14977 pigt3 14979 pige3 14980 cos02pilt1 14986 lgsdir2lem1 15144 ex-fl 15217 ex-gcd 15223 |
Copyright terms: Public domain | W3C validator |