| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3re | GIF version | ||
| Description: The number 3 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 3re | ⊢ 3 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9095 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 2re 9105 | . . 3 ⊢ 2 ∈ ℝ | |
| 3 | 1re 8070 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8084 | . 2 ⊢ (2 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2277 | 1 ⊢ 3 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 (class class class)co 5943 ℝcr 7923 1c1 7925 + caddc 7927 2c2 9086 3c3 9087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 df-2 9094 df-3 9095 |
| This theorem is referenced by: 3cn 9110 4re 9112 3ne0 9130 3ap0 9131 4pos 9132 1lt3 9207 3lt4 9208 2lt4 9209 3lt5 9212 3lt6 9217 2lt6 9218 3lt7 9223 2lt7 9224 3lt8 9230 2lt8 9231 3lt9 9238 2lt9 9239 1le3 9247 8th4div3 9255 halfpm6th 9256 3halfnz 9469 3lt10 9639 2lt10 9640 uzuzle23 9691 uz3m2nn 9693 nn01to3 9737 3rp 9780 fz0to4untppr 10245 expnass 10788 sqrt9 11330 ef01bndlem 12038 sin01bnd 12039 cos2bnd 12042 sin01gt0 12044 cos01gt0 12045 egt2lt3 12062 flodddiv4 12218 starvndxnmulrndx 12947 scandxnmulrndx 12959 vscandxnmulrndx 12964 ipndxnmulrndx 12977 tsetndxnmulrndx 12996 plendxnmulrndx 13010 dsndxnmulrndx 13025 slotsdifunifndx 13035 dveflem 15169 sincosq3sgn 15271 sincosq4sgn 15272 cosq23lt0 15276 coseq0q4123 15277 coseq00topi 15278 coseq0negpitopi 15279 tangtx 15281 sincos6thpi 15285 pigt3 15287 pige3 15288 cos02pilt1 15294 lgsdir2lem1 15476 2lgslem3 15549 ex-fl 15623 ex-gcd 15629 |
| Copyright terms: Public domain | W3C validator |