Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3re | GIF version |
Description: The number 3 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
3re | ⊢ 3 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 8938 | . 2 ⊢ 3 = (2 + 1) | |
2 | 2re 8948 | . . 3 ⊢ 2 ∈ ℝ | |
3 | 1re 7919 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 7933 | . 2 ⊢ (2 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2243 | 1 ⊢ 3 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 (class class class)co 5853 ℝcr 7773 1c1 7775 + caddc 7777 2c2 8929 3c3 8930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 df-2 8937 df-3 8938 |
This theorem is referenced by: 3cn 8953 4re 8955 3ne0 8973 3ap0 8974 4pos 8975 1lt3 9049 3lt4 9050 2lt4 9051 3lt5 9054 3lt6 9059 2lt6 9060 3lt7 9065 2lt7 9066 3lt8 9072 2lt8 9073 3lt9 9080 2lt9 9081 1le3 9089 8th4div3 9097 halfpm6th 9098 3halfnz 9309 3lt10 9479 2lt10 9480 uzuzle23 9530 uz3m2nn 9532 nn01to3 9576 3rp 9616 fz0to4untppr 10080 expnass 10581 sqrt9 11012 ef01bndlem 11719 sin01bnd 11720 cos2bnd 11723 sin01gt0 11724 cos01gt0 11725 egt2lt3 11742 flodddiv4 11893 dveflem 13481 sincosq3sgn 13543 sincosq4sgn 13544 cosq23lt0 13548 coseq0q4123 13549 coseq00topi 13550 coseq0negpitopi 13551 tangtx 13553 sincos6thpi 13557 pigt3 13559 pige3 13560 cos02pilt1 13566 lgsdir2lem1 13723 ex-fl 13760 ex-gcd 13766 |
Copyright terms: Public domain | W3C validator |