| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3re | GIF version | ||
| Description: The number 3 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 3re | ⊢ 3 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9096 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 2re 9106 | . . 3 ⊢ 2 ∈ ℝ | |
| 3 | 1re 8071 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8085 | . 2 ⊢ (2 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2278 | 1 ⊢ 3 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 (class class class)co 5944 ℝcr 7924 1c1 7926 + caddc 7928 2c2 9087 3c3 9088 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 df-2 9095 df-3 9096 |
| This theorem is referenced by: 3cn 9111 4re 9113 3ne0 9131 3ap0 9132 4pos 9133 1lt3 9208 3lt4 9209 2lt4 9210 3lt5 9213 3lt6 9218 2lt6 9219 3lt7 9224 2lt7 9225 3lt8 9231 2lt8 9232 3lt9 9239 2lt9 9240 1le3 9248 8th4div3 9256 halfpm6th 9257 3halfnz 9470 3lt10 9640 2lt10 9641 uzuzle23 9692 uz3m2nn 9694 nn01to3 9738 3rp 9781 fz0to4untppr 10246 expnass 10790 sqrt9 11359 ef01bndlem 12067 sin01bnd 12068 cos2bnd 12071 sin01gt0 12073 cos01gt0 12074 egt2lt3 12091 flodddiv4 12247 starvndxnmulrndx 12976 scandxnmulrndx 12988 vscandxnmulrndx 12993 ipndxnmulrndx 13006 tsetndxnmulrndx 13025 plendxnmulrndx 13039 dsndxnmulrndx 13054 slotsdifunifndx 13064 dveflem 15198 sincosq3sgn 15300 sincosq4sgn 15301 cosq23lt0 15305 coseq0q4123 15306 coseq00topi 15307 coseq0negpitopi 15308 tangtx 15310 sincos6thpi 15314 pigt3 15316 pige3 15317 cos02pilt1 15323 lgsdir2lem1 15505 2lgslem3 15578 ex-fl 15661 ex-gcd 15667 |
| Copyright terms: Public domain | W3C validator |