| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3re | GIF version | ||
| Description: The number 3 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 3re | ⊢ 3 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9166 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 2re 9176 | . . 3 ⊢ 2 ∈ ℝ | |
| 3 | 1re 8141 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8155 | . 2 ⊢ (2 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2302 | 1 ⊢ 3 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 (class class class)co 6000 ℝcr 7994 1c1 7996 + caddc 7998 2c2 9157 3c3 9158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 df-2 9165 df-3 9166 |
| This theorem is referenced by: 3cn 9181 4re 9183 3ne0 9201 3ap0 9202 4pos 9203 1lt3 9278 3lt4 9279 2lt4 9280 3lt5 9283 3lt6 9288 2lt6 9289 3lt7 9294 2lt7 9295 3lt8 9301 2lt8 9302 3lt9 9309 2lt9 9310 1le3 9318 8th4div3 9326 halfpm6th 9327 3halfnz 9540 3lt10 9710 2lt10 9711 uzuzle23 9762 uz3m2nn 9764 nn01to3 9808 3rp 9851 fz0to4untppr 10316 expnass 10862 sqrt9 11554 ef01bndlem 12262 sin01bnd 12263 cos2bnd 12266 sin01gt0 12268 cos01gt0 12269 egt2lt3 12286 flodddiv4 12442 starvndxnmulrndx 13172 scandxnmulrndx 13184 vscandxnmulrndx 13189 ipndxnmulrndx 13202 tsetndxnmulrndx 13221 plendxnmulrndx 13235 dsndxnmulrndx 13250 slotsdifunifndx 13260 dveflem 15394 sincosq3sgn 15496 sincosq4sgn 15497 cosq23lt0 15501 coseq0q4123 15502 coseq00topi 15503 coseq0negpitopi 15504 tangtx 15506 sincos6thpi 15510 pigt3 15512 pige3 15513 cos02pilt1 15519 lgsdir2lem1 15701 2lgslem3 15774 ex-fl 16047 ex-gcd 16053 |
| Copyright terms: Public domain | W3C validator |