| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3re | GIF version | ||
| Description: The number 3 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 3re | ⊢ 3 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9131 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 2re 9141 | . . 3 ⊢ 2 ∈ ℝ | |
| 3 | 1re 8106 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8120 | . 2 ⊢ (2 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2280 | 1 ⊢ 3 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2178 (class class class)co 5967 ℝcr 7959 1c1 7961 + caddc 7963 2c2 9122 3c3 9123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 df-2 9130 df-3 9131 |
| This theorem is referenced by: 3cn 9146 4re 9148 3ne0 9166 3ap0 9167 4pos 9168 1lt3 9243 3lt4 9244 2lt4 9245 3lt5 9248 3lt6 9253 2lt6 9254 3lt7 9259 2lt7 9260 3lt8 9266 2lt8 9267 3lt9 9274 2lt9 9275 1le3 9283 8th4div3 9291 halfpm6th 9292 3halfnz 9505 3lt10 9675 2lt10 9676 uzuzle23 9727 uz3m2nn 9729 nn01to3 9773 3rp 9816 fz0to4untppr 10281 expnass 10827 sqrt9 11474 ef01bndlem 12182 sin01bnd 12183 cos2bnd 12186 sin01gt0 12188 cos01gt0 12189 egt2lt3 12206 flodddiv4 12362 starvndxnmulrndx 13091 scandxnmulrndx 13103 vscandxnmulrndx 13108 ipndxnmulrndx 13121 tsetndxnmulrndx 13140 plendxnmulrndx 13154 dsndxnmulrndx 13169 slotsdifunifndx 13179 dveflem 15313 sincosq3sgn 15415 sincosq4sgn 15416 cosq23lt0 15420 coseq0q4123 15421 coseq00topi 15422 coseq0negpitopi 15423 tangtx 15425 sincos6thpi 15429 pigt3 15431 pige3 15432 cos02pilt1 15438 lgsdir2lem1 15620 2lgslem3 15693 ex-fl 15861 ex-gcd 15867 |
| Copyright terms: Public domain | W3C validator |