| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 7re | GIF version | ||
| Description: The number 7 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 7re | ⊢ 7 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 9099 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 6re 9116 | . . 3 ⊢ 6 ∈ ℝ | |
| 3 | 1re 8070 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8084 | . 2 ⊢ (6 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2277 | 1 ⊢ 7 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 (class class class)co 5943 ℝcr 7923 1c1 7925 + caddc 7927 6c6 9090 7c7 9091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 |
| This theorem is referenced by: 7cn 9119 8re 9120 8pos 9138 5lt7 9221 4lt7 9222 3lt7 9223 2lt7 9224 1lt7 9225 7lt8 9226 6lt8 9227 7lt9 9234 6lt9 9235 7lt10 9635 6lt10 9636 lgsdir2lem1 15476 |
| Copyright terms: Public domain | W3C validator |