ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7re GIF version

Theorem 7re 9189
Description: The number 7 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
7re 7 ∈ ℝ

Proof of Theorem 7re
StepHypRef Expression
1 df-7 9170 . 2 7 = (6 + 1)
2 6re 9187 . . 3 6 ∈ ℝ
3 1re 8141 . . 3 1 ∈ ℝ
42, 3readdcli 8155 . 2 (6 + 1) ∈ ℝ
51, 4eqeltri 2302 1 7 ∈ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2200  (class class class)co 6000  cr 7994  1c1 7996   + caddc 7998  6c6 9161  7c7 9162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-clel 2225  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170
This theorem is referenced by:  7cn  9190  8re  9191  8pos  9209  5lt7  9292  4lt7  9293  3lt7  9294  2lt7  9295  1lt7  9296  7lt8  9297  6lt8  9298  7lt9  9305  6lt9  9306  7lt10  9706  6lt10  9707  lgsdir2lem1  15701
  Copyright terms: Public domain W3C validator