| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 7re | GIF version | ||
| Description: The number 7 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 7re | ⊢ 7 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 9073 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 6re 9090 | . . 3 ⊢ 6 ∈ ℝ | |
| 3 | 1re 8044 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8058 | . 2 ⊢ (6 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 7 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5925 ℝcr 7897 1c1 7899 + caddc 7901 6c6 9064 7c7 9065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 |
| This theorem is referenced by: 7cn 9093 8re 9094 8pos 9112 5lt7 9195 4lt7 9196 3lt7 9197 2lt7 9198 1lt7 9199 7lt8 9200 6lt8 9201 7lt9 9208 6lt9 9209 7lt10 9608 6lt10 9609 lgsdir2lem1 15377 |
| Copyright terms: Public domain | W3C validator |