![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 7re | GIF version |
Description: The number 7 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
7re | ⊢ 7 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 9048 | . 2 ⊢ 7 = (6 + 1) | |
2 | 6re 9065 | . . 3 ⊢ 6 ∈ ℝ | |
3 | 1re 8020 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 8034 | . 2 ⊢ (6 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2266 | 1 ⊢ 7 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 (class class class)co 5919 ℝcr 7873 1c1 7875 + caddc 7877 6c6 9039 7c7 9040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 |
This theorem is referenced by: 7cn 9068 8re 9069 8pos 9087 5lt7 9170 4lt7 9171 3lt7 9172 2lt7 9173 1lt7 9174 7lt8 9175 6lt8 9176 7lt9 9183 6lt9 9184 7lt10 9583 6lt10 9584 lgsdir2lem1 15176 |
Copyright terms: Public domain | W3C validator |