ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7re GIF version

Theorem 7re 9154
Description: The number 7 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
7re 7 ∈ ℝ

Proof of Theorem 7re
StepHypRef Expression
1 df-7 9135 . 2 7 = (6 + 1)
2 6re 9152 . . 3 6 ∈ ℝ
3 1re 8106 . . 3 1 ∈ ℝ
42, 3readdcli 8120 . 2 (6 + 1) ∈ ℝ
51, 4eqeltri 2280 1 7 ∈ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2178  (class class class)co 5967  cr 7959  1c1 7961   + caddc 7963  6c6 9126  7c7 9127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2189  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-cleq 2200  df-clel 2203  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135
This theorem is referenced by:  7cn  9155  8re  9156  8pos  9174  5lt7  9257  4lt7  9258  3lt7  9259  2lt7  9260  1lt7  9261  7lt8  9262  6lt8  9263  7lt9  9270  6lt9  9271  7lt10  9671  6lt10  9672  lgsdir2lem1  15620
  Copyright terms: Public domain W3C validator