| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 7re | GIF version | ||
| Description: The number 7 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 7re | ⊢ 7 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 9135 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 6re 9152 | . . 3 ⊢ 6 ∈ ℝ | |
| 3 | 1re 8106 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8120 | . 2 ⊢ (6 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2280 | 1 ⊢ 7 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2178 (class class class)co 5967 ℝcr 7959 1c1 7961 + caddc 7963 6c6 9126 7c7 9127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 |
| This theorem is referenced by: 7cn 9155 8re 9156 8pos 9174 5lt7 9257 4lt7 9258 3lt7 9259 2lt7 9260 1lt7 9261 7lt8 9262 6lt8 9263 7lt9 9270 6lt9 9271 7lt10 9671 6lt10 9672 lgsdir2lem1 15620 |
| Copyright terms: Public domain | W3C validator |