ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7re GIF version

Theorem 7re 9119
Description: The number 7 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
7re 7 ∈ ℝ

Proof of Theorem 7re
StepHypRef Expression
1 df-7 9100 . 2 7 = (6 + 1)
2 6re 9117 . . 3 6 ∈ ℝ
3 1re 8071 . . 3 1 ∈ ℝ
42, 3readdcli 8085 . 2 (6 + 1) ∈ ℝ
51, 4eqeltri 2278 1 7 ∈ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2176  (class class class)co 5944  cr 7924  1c1 7926   + caddc 7928  6c6 9091  7c7 9092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-ext 2187  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-cleq 2198  df-clel 2201  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100
This theorem is referenced by:  7cn  9120  8re  9121  8pos  9139  5lt7  9222  4lt7  9223  3lt7  9224  2lt7  9225  1lt7  9226  7lt8  9227  6lt8  9228  7lt9  9235  6lt9  9236  7lt10  9636  6lt10  9637  lgsdir2lem1  15505
  Copyright terms: Public domain W3C validator