Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 7re | GIF version |
Description: The number 7 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
7re | ⊢ 7 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 8921 | . 2 ⊢ 7 = (6 + 1) | |
2 | 6re 8938 | . . 3 ⊢ 6 ∈ ℝ | |
3 | 1re 7898 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 7912 | . 2 ⊢ (6 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2239 | 1 ⊢ 7 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 (class class class)co 5842 ℝcr 7752 1c1 7754 + caddc 7756 6c6 8912 7c7 8913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 |
This theorem is referenced by: 7cn 8941 8re 8942 8pos 8960 5lt7 9042 4lt7 9043 3lt7 9044 2lt7 9045 1lt7 9046 7lt8 9047 6lt8 9048 7lt9 9055 6lt9 9056 7lt10 9454 6lt10 9455 lgsdir2lem1 13569 |
Copyright terms: Public domain | W3C validator |