| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 7re | GIF version | ||
| Description: The number 7 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 7re | ⊢ 7 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 9170 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 6re 9187 | . . 3 ⊢ 6 ∈ ℝ | |
| 3 | 1re 8141 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8155 | . 2 ⊢ (6 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2302 | 1 ⊢ 7 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 (class class class)co 6000 ℝcr 7994 1c1 7996 + caddc 7998 6c6 9161 7c7 9162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 |
| This theorem is referenced by: 7cn 9190 8re 9191 8pos 9209 5lt7 9292 4lt7 9293 3lt7 9294 2lt7 9295 1lt7 9296 7lt8 9297 6lt8 9298 7lt9 9305 6lt9 9306 7lt10 9706 6lt10 9707 lgsdir2lem1 15701 |
| Copyright terms: Public domain | W3C validator |