ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7re GIF version

Theorem 7re 9118
Description: The number 7 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
7re 7 ∈ ℝ

Proof of Theorem 7re
StepHypRef Expression
1 df-7 9099 . 2 7 = (6 + 1)
2 6re 9116 . . 3 6 ∈ ℝ
3 1re 8070 . . 3 1 ∈ ℝ
42, 3readdcli 8084 . 2 (6 + 1) ∈ ℝ
51, 4eqeltri 2277 1 7 ∈ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2175  (class class class)co 5943  cr 7923  1c1 7925   + caddc 7927  6c6 9090  7c7 9091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556  ax-ext 2186  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-cleq 2197  df-clel 2200  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099
This theorem is referenced by:  7cn  9119  8re  9120  8pos  9138  5lt7  9221  4lt7  9222  3lt7  9223  2lt7  9224  1lt7  9225  7lt8  9226  6lt8  9227  7lt9  9234  6lt9  9235  7lt10  9635  6lt10  9636  lgsdir2lem1  15476
  Copyright terms: Public domain W3C validator