ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7re GIF version

Theorem 7re 9055
Description: The number 7 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
7re 7 ∈ ℝ

Proof of Theorem 7re
StepHypRef Expression
1 df-7 9036 . 2 7 = (6 + 1)
2 6re 9053 . . 3 6 ∈ ℝ
3 1re 8008 . . 3 1 ∈ ℝ
42, 3readdcli 8022 . 2 (6 + 1) ∈ ℝ
51, 4eqeltri 2266 1 7 ∈ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2164  (class class class)co 5910  cr 7861  1c1 7863   + caddc 7865  6c6 9027  7c7 9028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175  ax-1re 7956  ax-addrcl 7959
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-clel 2189  df-2 9031  df-3 9032  df-4 9033  df-5 9034  df-6 9035  df-7 9036
This theorem is referenced by:  7cn  9056  8re  9057  8pos  9075  5lt7  9157  4lt7  9158  3lt7  9159  2lt7  9160  1lt7  9161  7lt8  9162  6lt8  9163  7lt9  9170  6lt9  9171  7lt10  9570  6lt10  9571  lgsdir2lem1  15086
  Copyright terms: Public domain W3C validator