ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7re GIF version

Theorem 7re 9090
Description: The number 7 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
7re 7 ∈ ℝ

Proof of Theorem 7re
StepHypRef Expression
1 df-7 9071 . 2 7 = (6 + 1)
2 6re 9088 . . 3 6 ∈ ℝ
3 1re 8042 . . 3 1 ∈ ℝ
42, 3readdcli 8056 . 2 (6 + 1) ∈ ℝ
51, 4eqeltri 2269 1 7 ∈ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2167  (class class class)co 5925  cr 7895  1c1 7897   + caddc 7899  6c6 9062  7c7 9063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071
This theorem is referenced by:  7cn  9091  8re  9092  8pos  9110  5lt7  9193  4lt7  9194  3lt7  9195  2lt7  9196  1lt7  9197  7lt8  9198  6lt8  9199  7lt9  9206  6lt9  9207  7lt10  9606  6lt10  9607  lgsdir2lem1  15353
  Copyright terms: Public domain W3C validator