| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 7re | GIF version | ||
| Description: The number 7 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 7re | ⊢ 7 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 9100 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 6re 9117 | . . 3 ⊢ 6 ∈ ℝ | |
| 3 | 1re 8071 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8085 | . 2 ⊢ (6 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2278 | 1 ⊢ 7 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 (class class class)co 5944 ℝcr 7924 1c1 7926 + caddc 7928 6c6 9091 7c7 9092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 |
| This theorem is referenced by: 7cn 9120 8re 9121 8pos 9139 5lt7 9222 4lt7 9223 3lt7 9224 2lt7 9225 1lt7 9226 7lt8 9227 6lt8 9228 7lt9 9235 6lt9 9236 7lt10 9636 6lt10 9637 lgsdir2lem1 15505 |
| Copyright terms: Public domain | W3C validator |