| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 5re | GIF version | ||
| Description: The number 5 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 5re | ⊢ 5 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 9069 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4re 9084 | . . 3 ⊢ 4 ∈ ℝ | |
| 3 | 1re 8042 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8056 | . 2 ⊢ (4 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 5 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5925 ℝcr 7895 1c1 7897 + caddc 7899 4c4 9060 5c5 9061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-2 9066 df-3 9067 df-4 9068 df-5 9069 |
| This theorem is referenced by: 5cn 9087 6re 9088 6pos 9108 3lt5 9184 2lt5 9185 1lt5 9186 5lt6 9187 4lt6 9188 5lt7 9193 4lt7 9194 5lt8 9200 4lt8 9201 5lt9 9208 4lt9 9209 5lt10 9608 4lt10 9609 5recm6rec 9617 ef01bndlem 11938 vscandxnscandx 12864 slotsdifipndx 12877 slotstnscsi 12897 plendxnscandx 12910 slotsdnscsi 12925 lgsdir2lem1 15353 gausslemma2dlem4 15389 2lgslem3 15426 |
| Copyright terms: Public domain | W3C validator |