Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 5re | GIF version |
Description: The number 5 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
5re | ⊢ 5 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 8896 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4re 8911 | . . 3 ⊢ 4 ∈ ℝ | |
3 | 1re 7878 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 7892 | . 2 ⊢ (4 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2230 | 1 ⊢ 5 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2128 (class class class)co 5825 ℝcr 7732 1c1 7734 + caddc 7736 4c4 8887 5c5 8888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-17 1506 ax-ial 1514 ax-ext 2139 ax-1re 7827 ax-addrcl 7830 |
This theorem depends on definitions: df-bi 116 df-cleq 2150 df-clel 2153 df-2 8893 df-3 8894 df-4 8895 df-5 8896 |
This theorem is referenced by: 5cn 8914 6re 8915 6pos 8935 3lt5 9010 2lt5 9011 1lt5 9012 5lt6 9013 4lt6 9014 5lt7 9019 4lt7 9020 5lt8 9026 4lt8 9027 5lt9 9034 4lt9 9035 5lt10 9430 4lt10 9431 5recm6rec 9439 ef01bndlem 11657 |
Copyright terms: Public domain | W3C validator |