Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 5re | GIF version |
Description: The number 5 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
5re | ⊢ 5 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 8915 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4re 8930 | . . 3 ⊢ 4 ∈ ℝ | |
3 | 1re 7894 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 7908 | . 2 ⊢ (4 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2238 | 1 ⊢ 5 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 (class class class)co 5841 ℝcr 7748 1c1 7750 + caddc 7752 4c4 8906 5c5 8907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-1re 7843 ax-addrcl 7846 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 df-2 8912 df-3 8913 df-4 8914 df-5 8915 |
This theorem is referenced by: 5cn 8933 6re 8934 6pos 8954 3lt5 9029 2lt5 9030 1lt5 9031 5lt6 9032 4lt6 9033 5lt7 9038 4lt7 9039 5lt8 9045 4lt8 9046 5lt9 9053 4lt9 9054 5lt10 9452 4lt10 9453 5recm6rec 9461 ef01bndlem 11693 lgsdir2lem1 13529 |
Copyright terms: Public domain | W3C validator |