![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 5re | GIF version |
Description: The number 5 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
5re | ⊢ 5 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 9046 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4re 9061 | . . 3 ⊢ 4 ∈ ℝ | |
3 | 1re 8020 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 8034 | . 2 ⊢ (4 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2266 | 1 ⊢ 5 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 (class class class)co 5919 ℝcr 7873 1c1 7875 + caddc 7877 4c4 9037 5c5 9038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 df-2 9043 df-3 9044 df-4 9045 df-5 9046 |
This theorem is referenced by: 5cn 9064 6re 9065 6pos 9085 3lt5 9161 2lt5 9162 1lt5 9163 5lt6 9164 4lt6 9165 5lt7 9170 4lt7 9171 5lt8 9177 4lt8 9178 5lt9 9185 4lt9 9186 5lt10 9585 4lt10 9586 5recm6rec 9594 ef01bndlem 11902 vscandxnscandx 12782 slotsdifipndx 12795 slotstnscsi 12815 plendxnscandx 12828 slotsdnscsi 12839 lgsdir2lem1 15185 gausslemma2dlem4 15221 2lgslem3 15258 |
Copyright terms: Public domain | W3C validator |