| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 5re | GIF version | ||
| Description: The number 5 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 5re | ⊢ 5 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 9097 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4re 9112 | . . 3 ⊢ 4 ∈ ℝ | |
| 3 | 1re 8070 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8084 | . 2 ⊢ (4 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2277 | 1 ⊢ 5 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 (class class class)co 5943 ℝcr 7923 1c1 7925 + caddc 7927 4c4 9088 5c5 9089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 df-2 9094 df-3 9095 df-4 9096 df-5 9097 |
| This theorem is referenced by: 5cn 9115 6re 9116 6pos 9136 3lt5 9212 2lt5 9213 1lt5 9214 5lt6 9215 4lt6 9216 5lt7 9221 4lt7 9222 5lt8 9228 4lt8 9229 5lt9 9236 4lt9 9237 5lt10 9637 4lt10 9638 5recm6rec 9646 ef01bndlem 12038 vscandxnscandx 12965 slotsdifipndx 12978 slotstnscsi 12998 plendxnscandx 13011 slotsdnscsi 13026 lgsdir2lem1 15476 gausslemma2dlem4 15512 2lgslem3 15549 |
| Copyright terms: Public domain | W3C validator |