ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5re GIF version

Theorem 5re 9115
Description: The number 5 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
5re 5 ∈ ℝ

Proof of Theorem 5re
StepHypRef Expression
1 df-5 9098 . 2 5 = (4 + 1)
2 4re 9113 . . 3 4 ∈ ℝ
3 1re 8071 . . 3 1 ∈ ℝ
42, 3readdcli 8085 . 2 (4 + 1) ∈ ℝ
51, 4eqeltri 2278 1 5 ∈ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2176  (class class class)co 5944  cr 7924  1c1 7926   + caddc 7928  4c4 9089  5c5 9090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-ext 2187  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-cleq 2198  df-clel 2201  df-2 9095  df-3 9096  df-4 9097  df-5 9098
This theorem is referenced by:  5cn  9116  6re  9117  6pos  9137  3lt5  9213  2lt5  9214  1lt5  9215  5lt6  9216  4lt6  9217  5lt7  9222  4lt7  9223  5lt8  9229  4lt8  9230  5lt9  9237  4lt9  9238  5lt10  9638  4lt10  9639  5recm6rec  9647  ef01bndlem  12067  vscandxnscandx  12994  slotsdifipndx  13007  slotstnscsi  13027  plendxnscandx  13040  slotsdnscsi  13055  lgsdir2lem1  15505  gausslemma2dlem4  15541  2lgslem3  15578
  Copyright terms: Public domain W3C validator