| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 5re | GIF version | ||
| Description: The number 5 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 5re | ⊢ 5 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 9168 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4re 9183 | . . 3 ⊢ 4 ∈ ℝ | |
| 3 | 1re 8141 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8155 | . 2 ⊢ (4 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2302 | 1 ⊢ 5 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 (class class class)co 6000 ℝcr 7994 1c1 7996 + caddc 7998 4c4 9159 5c5 9160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 df-2 9165 df-3 9166 df-4 9167 df-5 9168 |
| This theorem is referenced by: 5cn 9186 6re 9187 6pos 9207 3lt5 9283 2lt5 9284 1lt5 9285 5lt6 9286 4lt6 9287 5lt7 9292 4lt7 9293 5lt8 9299 4lt8 9300 5lt9 9307 4lt9 9308 5lt10 9708 4lt10 9709 5recm6rec 9717 ef01bndlem 12262 vscandxnscandx 13190 slotsdifipndx 13203 slotstnscsi 13223 plendxnscandx 13236 slotsdnscsi 13251 lgsdir2lem1 15701 gausslemma2dlem4 15737 2lgslem3 15774 |
| Copyright terms: Public domain | W3C validator |