ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5re GIF version

Theorem 5re 9185
Description: The number 5 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
5re 5 ∈ ℝ

Proof of Theorem 5re
StepHypRef Expression
1 df-5 9168 . 2 5 = (4 + 1)
2 4re 9183 . . 3 4 ∈ ℝ
3 1re 8141 . . 3 1 ∈ ℝ
42, 3readdcli 8155 . 2 (4 + 1) ∈ ℝ
51, 4eqeltri 2302 1 5 ∈ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2200  (class class class)co 6000  cr 7994  1c1 7996   + caddc 7998  4c4 9159  5c5 9160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-clel 2225  df-2 9165  df-3 9166  df-4 9167  df-5 9168
This theorem is referenced by:  5cn  9186  6re  9187  6pos  9207  3lt5  9283  2lt5  9284  1lt5  9285  5lt6  9286  4lt6  9287  5lt7  9292  4lt7  9293  5lt8  9299  4lt8  9300  5lt9  9307  4lt9  9308  5lt10  9708  4lt10  9709  5recm6rec  9717  ef01bndlem  12262  vscandxnscandx  13190  slotsdifipndx  13203  slotstnscsi  13223  plendxnscandx  13236  slotsdnscsi  13251  lgsdir2lem1  15701  gausslemma2dlem4  15737  2lgslem3  15774
  Copyright terms: Public domain W3C validator