Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 5re | GIF version |
Description: The number 5 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
5re | ⊢ 5 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 8940 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4re 8955 | . . 3 ⊢ 4 ∈ ℝ | |
3 | 1re 7919 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 7933 | . 2 ⊢ (4 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2243 | 1 ⊢ 5 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 (class class class)co 5853 ℝcr 7773 1c1 7775 + caddc 7777 4c4 8931 5c5 8932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 df-2 8937 df-3 8938 df-4 8939 df-5 8940 |
This theorem is referenced by: 5cn 8958 6re 8959 6pos 8979 3lt5 9054 2lt5 9055 1lt5 9056 5lt6 9057 4lt6 9058 5lt7 9063 4lt7 9064 5lt8 9070 4lt8 9071 5lt9 9078 4lt9 9079 5lt10 9477 4lt10 9478 5recm6rec 9486 ef01bndlem 11719 lgsdir2lem1 13723 |
Copyright terms: Public domain | W3C validator |