| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 5re | GIF version | ||
| Description: The number 5 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 5re | ⊢ 5 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 9071 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4re 9086 | . . 3 ⊢ 4 ∈ ℝ | |
| 3 | 1re 8044 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8058 | . 2 ⊢ (4 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 5 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5925 ℝcr 7897 1c1 7899 + caddc 7901 4c4 9062 5c5 9063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-2 9068 df-3 9069 df-4 9070 df-5 9071 |
| This theorem is referenced by: 5cn 9089 6re 9090 6pos 9110 3lt5 9186 2lt5 9187 1lt5 9188 5lt6 9189 4lt6 9190 5lt7 9195 4lt7 9196 5lt8 9202 4lt8 9203 5lt9 9210 4lt9 9211 5lt10 9610 4lt10 9611 5recm6rec 9619 ef01bndlem 11940 vscandxnscandx 12866 slotsdifipndx 12879 slotstnscsi 12899 plendxnscandx 12912 slotsdnscsi 12927 lgsdir2lem1 15377 gausslemma2dlem4 15413 2lgslem3 15450 |
| Copyright terms: Public domain | W3C validator |