ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6re GIF version

Theorem 6re 9152
Description: The number 6 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
6re 6 ∈ ℝ

Proof of Theorem 6re
StepHypRef Expression
1 df-6 9134 . 2 6 = (5 + 1)
2 5re 9150 . . 3 5 ∈ ℝ
3 1re 8106 . . 3 1 ∈ ℝ
42, 3readdcli 8120 . 2 (5 + 1) ∈ ℝ
51, 4eqeltri 2280 1 6 ∈ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2178  (class class class)co 5967  cr 7959  1c1 7961   + caddc 7963  5c5 9125  6c6 9126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2189  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-cleq 2200  df-clel 2203  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134
This theorem is referenced by:  6cn  9153  7re  9154  7pos  9173  4lt6  9252  3lt6  9253  2lt6  9254  1lt6  9255  6lt7  9256  5lt7  9257  6lt8  9263  5lt8  9264  6lt9  9271  5lt9  9272  8th4div3  9291  halfpm6th  9292  div4p1lem1div2  9326  6lt10  9672  5lt10  9673  5recm6rec  9682  efi4p  12143  resin4p  12144  recos4p  12145  ef01bndlem  12182  sin01bnd  12183  cos01bnd  12184  slotsdifipndx  13122  slotstnscsi  13142  plendxnvscandx  13156  slotsdnscsi  13170  sincos6thpi  15429  pigt3  15431
  Copyright terms: Public domain W3C validator