| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6re | GIF version | ||
| Description: The number 6 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 6re | ⊢ 6 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 9072 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5re 9088 | . . 3 ⊢ 5 ∈ ℝ | |
| 3 | 1re 8044 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8058 | . 2 ⊢ (5 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 6 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5925 ℝcr 7897 1c1 7899 + caddc 7901 5c5 9063 6c6 9064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 |
| This theorem is referenced by: 6cn 9091 7re 9092 7pos 9111 4lt6 9190 3lt6 9191 2lt6 9192 1lt6 9193 6lt7 9194 5lt7 9195 6lt8 9201 5lt8 9202 6lt9 9209 5lt9 9210 8th4div3 9229 halfpm6th 9230 div4p1lem1div2 9264 6lt10 9609 5lt10 9610 5recm6rec 9619 efi4p 11901 resin4p 11902 recos4p 11903 ef01bndlem 11940 sin01bnd 11941 cos01bnd 11942 slotsdifipndx 12879 slotstnscsi 12899 plendxnvscandx 12913 slotsdnscsi 12927 sincos6thpi 15186 pigt3 15188 |
| Copyright terms: Public domain | W3C validator |