| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6re | GIF version | ||
| Description: The number 6 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 6re | ⊢ 6 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 9098 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5re 9114 | . . 3 ⊢ 5 ∈ ℝ | |
| 3 | 1re 8070 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8084 | . 2 ⊢ (5 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2277 | 1 ⊢ 6 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 (class class class)co 5943 ℝcr 7923 1c1 7925 + caddc 7927 5c5 9089 6c6 9090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 |
| This theorem is referenced by: 6cn 9117 7re 9118 7pos 9137 4lt6 9216 3lt6 9217 2lt6 9218 1lt6 9219 6lt7 9220 5lt7 9221 6lt8 9227 5lt8 9228 6lt9 9235 5lt9 9236 8th4div3 9255 halfpm6th 9256 div4p1lem1div2 9290 6lt10 9636 5lt10 9637 5recm6rec 9646 efi4p 11999 resin4p 12000 recos4p 12001 ef01bndlem 12038 sin01bnd 12039 cos01bnd 12040 slotsdifipndx 12978 slotstnscsi 12998 plendxnvscandx 13012 slotsdnscsi 13026 sincos6thpi 15285 pigt3 15287 |
| Copyright terms: Public domain | W3C validator |