| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6re | GIF version | ||
| Description: The number 6 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 6re | ⊢ 6 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 9169 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5re 9185 | . . 3 ⊢ 5 ∈ ℝ | |
| 3 | 1re 8141 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 8155 | . 2 ⊢ (5 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2302 | 1 ⊢ 6 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 (class class class)co 6000 ℝcr 7994 1c1 7996 + caddc 7998 5c5 9160 6c6 9161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 |
| This theorem is referenced by: 6cn 9188 7re 9189 7pos 9208 4lt6 9287 3lt6 9288 2lt6 9289 1lt6 9290 6lt7 9291 5lt7 9292 6lt8 9298 5lt8 9299 6lt9 9306 5lt9 9307 8th4div3 9326 halfpm6th 9327 div4p1lem1div2 9361 6lt10 9707 5lt10 9708 5recm6rec 9717 efi4p 12223 resin4p 12224 recos4p 12225 ef01bndlem 12262 sin01bnd 12263 cos01bnd 12264 slotsdifipndx 13203 slotstnscsi 13223 plendxnvscandx 13237 slotsdnscsi 13251 sincos6thpi 15510 pigt3 15512 |
| Copyright terms: Public domain | W3C validator |