ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6re GIF version

Theorem 6re 9090
Description: The number 6 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
6re 6 ∈ ℝ

Proof of Theorem 6re
StepHypRef Expression
1 df-6 9072 . 2 6 = (5 + 1)
2 5re 9088 . . 3 5 ∈ ℝ
3 1re 8044 . . 3 1 ∈ ℝ
42, 3readdcli 8058 . 2 (5 + 1) ∈ ℝ
51, 4eqeltri 2269 1 6 ∈ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2167  (class class class)co 5925  cr 7897  1c1 7899   + caddc 7901  5c5 9063  6c6 9064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178  ax-1re 7992  ax-addrcl 7995
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072
This theorem is referenced by:  6cn  9091  7re  9092  7pos  9111  4lt6  9190  3lt6  9191  2lt6  9192  1lt6  9193  6lt7  9194  5lt7  9195  6lt8  9201  5lt8  9202  6lt9  9209  5lt9  9210  8th4div3  9229  halfpm6th  9230  div4p1lem1div2  9264  6lt10  9609  5lt10  9610  5recm6rec  9619  efi4p  11901  resin4p  11902  recos4p  11903  ef01bndlem  11940  sin01bnd  11941  cos01bnd  11942  slotsdifipndx  12879  slotstnscsi  12899  plendxnvscandx  12913  slotsdnscsi  12927  sincos6thpi  15186  pigt3  15188
  Copyright terms: Public domain W3C validator