| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reubidv | GIF version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| reubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| reubidv | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reubidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | reubidva 2680 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2167 ∃!wreu 2477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-eu 2048 df-reu 2482 |
| This theorem is referenced by: reueqd 2707 sbcreug 3070 xpf1o 6905 srpospr 7850 creur 8986 creui 8987 divalg2 12091 srgideu 13528 ringideu 13573 |
| Copyright terms: Public domain | W3C validator |