ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reubidv GIF version

Theorem reubidv 2696
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 17-Oct-1996.)
Hypothesis
Ref Expression
reubidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
reubidv (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem reubidv
StepHypRef Expression
1 reubidv.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 276 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
32reubidva 2695 1 (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2180  ∃!wreu 2490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1473  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-4 1536  ax-17 1552  ax-ial 1560
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-eu 2060  df-reu 2495
This theorem is referenced by:  reueqd  2722  sbcreug  3089  xpf1o  6973  srpospr  7938  creur  9074  creui  9075  divalg2  12403  srgideu  13901  ringideu  13946
  Copyright terms: Public domain W3C validator