ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reubidv GIF version

Theorem reubidv 2614
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 17-Oct-1996.)
Hypothesis
Ref Expression
reubidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
reubidv (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem reubidv
StepHypRef Expression
1 reubidv.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 274 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
32reubidva 2613 1 (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 1480  ∃!wreu 2418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-4 1487  ax-17 1506  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-eu 2002  df-reu 2423
This theorem is referenced by:  reueqd  2636  sbcreug  2989  xpf1o  6738  srpospr  7603  creur  8729  creui  8730  divalg2  11634
  Copyright terms: Public domain W3C validator