ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcreug GIF version

Theorem sbcreug 3031
Description: Interchange class substitution and restricted unique existential quantifier. (Contributed by NM, 24-Feb-2013.)
Assertion
Ref Expression
sbcreug (𝐴𝑉 → ([𝐴 / 𝑥]∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝐴 / 𝑥]𝜑))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbcreug
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2954 . 2 (𝑧 = 𝐴 → ([𝑧 / 𝑥]∃!𝑦𝐵 𝜑[𝐴 / 𝑥]∃!𝑦𝐵 𝜑))
2 dfsbcq2 2954 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32reubidv 2649 . 2 (𝑧 = 𝐴 → (∃!𝑦𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃!𝑦𝐵 [𝐴 / 𝑥]𝜑))
4 nfcv 2308 . . . 4 𝑥𝐵
5 nfs1v 1927 . . . 4 𝑥[𝑧 / 𝑥]𝜑
64, 5nfreuxy 2640 . . 3 𝑥∃!𝑦𝐵 [𝑧 / 𝑥]𝜑
7 sbequ12 1759 . . . 4 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
87reubidv 2649 . . 3 (𝑥 = 𝑧 → (∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝑧 / 𝑥]𝜑))
96, 8sbie 1779 . 2 ([𝑧 / 𝑥]∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝑧 / 𝑥]𝜑)
101, 3, 9vtoclbg 2787 1 (𝐴𝑉 → ([𝐴 / 𝑥]∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝐴 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  [wsb 1750  wcel 2136  ∃!wreu 2446  [wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-reu 2451  df-v 2728  df-sbc 2952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator